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FUZZY FRACTIONAL CONFORMABLE LAPLACE

TRANSFORMS

Negar Bakhshi Sadabadi∗, Fariba Maheri

Abstract. In this paper, we define a fractional conformable fuzzy Laplace

transform and prove some related theorems. Also by using this transform

we solve some fuzzy fractional differential equations.

1. Introduction

Fractional calculus is the generalization of the standard calculus. That
involves the derivative of functions to arbitrary orders and has found many ap-
plications in science, engineering, and so forth. During the last decade, there
were a lots of works on discrete fractional calculus for special equations and
have been discussed extensively as valuable tools in the modeling of many phe-
nomena in various fields of science and engineering. Fractional derivatives are
generalizations for a derivative of integral order. The readers can find more
details in [4, 5, 7, 8, 9, 10, 12, 13, 14] and the references therein .
Fuzzy calculus is a part of mathematical analysis, widely explored in ongoing
years and has risen as a viable and amazing assert for the scientific demon-
strating of engineering and scientific phenomena. The uncertainty is impor-
tant subject in measurement of quantities in physics. Fuzzy sets have been
introduced by Lotfi Zadeh in 1965 and since then they have been used in many
applications .
Fuzzy Fractional Differential Equations (FFDE) can offer a more comprehen-
sive account of the process of phenomenon. This has recently captured much
attention in FFDE. As the derivative of a function is defined in the sense of
Riemann-Liouville, Grunwald-Letnikov or Caputo in fractional calculus, the
used derivative is to be specified and defined in FFDE as well [3, 6, 16].
The fuzzy Laplace transform method solves FDE and corresponding fuzzy ini-
tial and boundary value problems. In this way fuzzy Laplace transforms reduce
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the problem of solving a FDE to an algebraic problem. This switching from op-
erations of calculus to algebraic operations on transforms is called operational
calculus, a very important area of applied mathematics. The fuzzy Laplace
transform method solves FFDEs and corresponding fuzzy initial and boundary
value problems also has the advantage that it solves problems directly without
determining a general solution in the first and obtaining non homogeneous dif-
feretial equations [2, 15, 18, 19].
The derivative for fuzzy valued mappings was developed by Puri and Ralescu
in 1983 [11] which generalized and extended the concept of Hukuhara differen-
tiability for set-valued mappings to the class of fuzzy mappings.
In [14], a new well-behaved simple fractional derivative which is called ”the
conformable fractional derivative” depending just on the basic limit definition
of the derivative was defined, namely, for a function h : (0,∞) → R the con-
formable fractional derivative of order 0 < α ≤ 1 of h at t > 0 is as follows:

Tα(h)(t) = lim
ε→0

h(t+ εt1−α)− h(t)

ε
.

This definition is very easy for calculating derivatives and solving fractional
differential equations compared with other fractional definitions. Moreover it
can be easily extended to generalize many integral transforms such as Laplace,
Mellin, Natural and Sumudu transforms [19].
Also the conformable fractional integral has been defined of order α by [17]:

Iαh(x) =

∫ x

0

h(t)tα−1dt.

In fact, if h(x) is an n-differentiable function at x > 0 and α ∈ (0, 1], n ∈ N,
then:

Dαh(x) = x1−α
d

dx
h(x),

DαIαh(x) = h(x).

2. Preliminaries

In this paper, we define Fuzzy Laplace Conformable transform and prove
some related theorems. Then we solve some FCFDE by this transform. Finally
we present the conclusions by drawing a diagram.
We denote the set of all real numbers by R and the set of all fuzzy numbers
on R is indicated by E. A fuzzy number is a mapping u : R→ [0, 1] with the
following properties:
a) u is upper semi-continuous,
b) u is fuzzy convex, i.e, u(λx + (1 − λ)y) ≥ min{u(x), u(y)} for all x, y ∈
R, λ ∈ [0, 1],
c) u is normal, i.e, there exist x0 ∈ R such that u(x0) = 1,
d) suppu = {x ∈ R, u(x) > 0} is the support of the u, and its closure is
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compact.
An equivalent parametric definition is also given in as follows:

Definition 2.1. [18] A fuzzy number u in a parametric form is a pair (u, u)
of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following requirements:
a) u(r) is a bounded non-decreasing left continuous function in (0, 1] and right
continuous at 0,
b) u(r) is a bounded non-increasing left continuous function in (0, 1] and right
continuous at 0,
c) u(r) ≤ u(r), 0 ≤ r ≤ 1.

According to Zadeh’s extension principle, operation of addition on E is
defined by

(u⊕ v)(x) = sup
y∈R

min{u(y), v(x− y)}, x ∈ R,

and scaler multiplication of a fuzzy number is given by

(k � u)(x) =

{
u(xk ), k¿0,
0̄, k = 0,

where 0̄ ∈ E.
It is well known that the following properties are true for all levels

[u⊕ v]r = [u]r ⊕ [v]r, [k � u]r = k[u]r.

The Hausdorff distance between fuzzy numbers given by d : E×E→ [0,∞),

d(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|},

where u = (u(r), u(r)), v = (v(r), v(r)) ⊂ R is utilized in [3]. Then it is easy
to see that d is a metric in E and has the following properties:
a) d(u⊕ w, v ⊕ w) = d(u, v),∀u, v, w ∈ E,
b) d(k � u, k � v) = |k|d(u, v),∀k ∈ R, u, v ∈ E,
c) d(u⊕ v, w ⊕ e) ≤ d(u,w) + d(v, e),∀u, v, w, e ∈ E
d) (d,E) is a complete metric space.
Note that a function f : A → E, A ⊆ R is called fuzzy valued function. The
r-cut representation of fuzzy valued function f can be expressed by f(x, r) =
[f(x, r), f(x, r)], x ∈ A ⊆ R and 0 ≤ r ≤ 1 [11].

Definition 2.2. [9] Let f : R → E be a fuzzy-valued function. If for
arbitrary fixed t0 ∈ R and ε > 0, δ > 0 such that |t − t0| < δ we have
d(f(t), f(t0)) < ε, f is said to be continuous.

Theorem 2.3. [18] Let f(x) be a fuzzy value function on [a,∞) represented
by (f(x, r), f(x, r)). For any fixed r ∈ [0, 1], assume f(x, r) and f(x, r) are
Riemann-integrable on [a, b] for every b ≥ a and assume there are two positive

functions M(r) and M(r) such that
∫ b
a
|f(x, r)|dx ≤M(r) and

∫ b
a
|f(x, r)|dx ≤

M(r) for every b ≥ a. Then f(x) is improper fuzzy Rieman-integrable on [a,∞)
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and the improper fuzzy Rieman-integrable is a fuzzy number. Further more,
we have: ∫ ∞

a

f(x)dx = [

∫ ∞
a

f(x, r)dx,

∫ ∞
a

f(x, r)dx].

Definition 2.4. [18] Let x, y ∈ E, if there exist z ∈ E such that x = y⊕ z,
then z is called the H-difference of x and y.

Note that x� y 6= x+ (−1)y.

Theorem 2.5. [18] Let f(x) and g(x) are fuzzy value functions and fuzzy
Riemmn integrable on [a,∞) then f(x)⊕ g(x) is fuzzy Riemman-integrable on
[a,∞). Moreover, we have:∫ ∞

a

f(x)⊕ g(x)dx =

∫ ∞
a

f(x)dx⊕
∫ ∞
a

g(x)dx.

Theorem 2.6. [18] For x0 ∈ R the fuzzy differential equation y
′

= f(x, y),
y(x0) = y ∈ E where f : R×E→ E is supposed to be continuous, is equivalent
to one of the integral equations:

y(x) = y0 ⊕
∫ x

x0

f(t, y(t))dt, ∀x ∈ [x0, x1],

y1(0) = y1(x)⊕ (−1)�
∫ x

x0

f(t, y1(t))dt, ∀x ∈ [x0, x1],

on some interval (x0, x1), depending on the strong differentiability considered,
α1 or α2-differentiable, respectively.

Now, we give fuzzy conformable fractional derivatives about order 0 < α < 1
for fuzzy-value function F .

Definition 2.7. [9] Let F : I → E be a fuzzy function. qth order ”fuzzy
conformable fractional derivative ” of F is defined by

Dα(F )(t) = lim
ε→0+

F (t+ εt1−α) � F (t)

ε
= lim
ε→0+

F (t) � F (t− εt1−α)

ε
,

for all t > 0, α ∈ (0, 1).

If F is α-differentiable in some (0, a) then lim
t→0+

Fα(t) = Fα(0) and the limit

exist in metric d.
Now, we present the following definition that is more general than previous
one.

Definition 2.8. [9] Let F : I → E be a fuzzy function and α ∈ (0, 1]. One
says F is α1-differentiable at point t > 0 if there exists an element Dα(F )(t) ∈
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RF such that for all ε > 0 sufficiently near to 0, there exist F (t+ εt1−q)�F (t)
, F (t) � F (t− εt1−α) and the limit (in the metric d):

Dα(F )(t) = lim
ε→0+

F (t+ εt1−α) � F (t)

ε
= lim
ε→0+

F (t) � F (t− εt1−α)

ε
.(1)

Where F is α2-differentiable at point t > 0 if there exists an elementDα(F )(t) ∈
RF such that for all ε < 0 sufficiently near to 0, there exist F (t+ εt1−α)�F (t)
, F (t) � F (t− εt1−α):

Dα(F )(t) = lim
ε→0−

F (t+ εt1−α) � F (t)

ε
= lim
ε→0−

F (t) � F (t− εt1−α)

ε
.(2)

If F is αn-differentiable at t > 0, we denote its α-derivative (α ∈ (0, 1]) by
Fαn (t) for n=1,2.

Theorem 2.9. [9] Let F : I → E be a fuzzy function, where F (t) =
[f(t, r), f(t, r)] , t ∈ [0, 1]:

i) If F is α1-differentiable, then f(t, r) and f(t, r) are α-differentiable and

[F (α(1))(t)]α = [f (α)(t, r), f
(α)

(t, r)].

ii) If F is α2-differentiable, then fα1 (t) and fα2 (t) are α-differentiable and

[F (α(2))(t)]α = [f
(α)

(t, r), f (α)(t, r)].

We restrict our attention to functions which are α1 or α2-differentiable on
their domain except on a finite number of points.

Theorem 2.10. [9] Let F : I → E be a fuzzy function. Then the subse-
quent are working:
i) If F is α1-differentiable at t ∈ I, then F is continuous at t.
ii) If F is α2-differentiable at t ∈ I, then F is continuous at t.

More results, knowledge and properties one can refer to Abdeljawad (2015),
Allahviranlo (2010) and Bede (2005).

3. Main Results

In this section, we discuss what is necessary to apply the fuzzy conformable
Laplace transform for solving equations.

Definition 3.1. Let f(x) be a continuous fuzzy value function. Suppose

that f(x)�e−s x
α

α �xα−1 is improper fuzzy Riemann-integrable on [0,∞), then∫∞
0
f(x)� e−s x

α

α � xα−1dx is called fuzzy fractional Laplace transform and is
denoted as

Lα[f(x)] =

∫ ∞
0

f(x)� e−s x
α

α � xα−1dx,

that which s > 0 and integer.
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From Theorem 3.2, we have:∫ ∞
0

f(x)� e−s x
α

α � xα−1dx

= (

∫ ∞
0

f(x, r)e−s
xα

α xα−1dx,

∫ ∞
0

f(x, r)e−s
xα

α xα−1dx),

also by using the definition of classical Laplace transform, we get lα[f(x, r)] =∫∞
0
f(x, r)e−s

xα

α xα−1dx and lα[f(x, r)] =
∫∞
0
f(x, r)e−s

xα

α xα−1dx, so we have

Lα[f(x)] = (lα[f(x, r)], lα[f(x, r)]),

Theorem 3.2. Let f(x), g(x) be continuous fuzzy-value functions, suppose
that c1, c2 are constants, then

Lα[(c1 � f(x))⊕ (c2 � g(x)] = (c1 � Lα[f(x)])⊕ (c2 � Lα[g(x)]).

Proof. By Definition 3 and Theorem 2.5 we have,

Lα[(c1 � f(x))⊕ (c2 � g(x)]

=

∫ ∞
0

(c1 � f(x)⊕ c2 � g(x))� e−s x
α

α � xα−1dx

=

∫ ∞
0

c1 � f(x)� e−s x
α

α � xα−1dx⊕
∫ ∞
0

c2 � g(x)� e−s x
α

α � xα−1dx

= (c1 �
∫ ∞
0

f(x)� e−s x
α

α � xα−1dx)⊕ (c2 �
∫ ∞
0

g(x)� e−s x
α

α � xα−1dx)

= c1 � Lα[f(x)]⊕ c2 � Lα[g(x)].

Lemma 3.3. Let f(x) be continuous fuzzy-value function on [0,∞) and
λ ≥ 0, then

Lα[λ� f(x)] = λ� Lα[f(x)].

Proof. By Definition 3 and Theorem 2.5 we have,

Lα[λ� f(x)] =

∫ ∞
0

λ� f(x)� e−s x
α

α � xα−1dx

= λ�
∫ ∞
0

f(x)� e−s x
α

α � xα−1dx

then

Lα[λ� f(x)] = λ� Lα[f(x)].
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Remark 3.4. Suppose that f(x) is a continuous fuzzy-value function and

g(x) ≥ 0 and (f(x) � g(x)) � e−s
xα

α � xα−1 is a improper fuzzy Riemann-
integrable on [0,∞), then∫ ∞

0

(f(x)� g(x))� e−s x
α

α � xα−1dx

= (

∫ ∞
0

g(x)f(x, r)e−s
xα

α xα−1dx,

∫ ∞
0

g(x)f(x, r)e−s
xα

α xα−1dx).

Theorem 3.5. Suppose that f(x) is a continuous fuzzy-value function and
Lα[f(x)] = F (s), then

Lα[ea
xα

α � f(x)] = F (s− a),

where ea
xα

α is a real value function and s− a > 0.

Proof.

Lα[ea
xα

α � f(x)]

=

∫ ∞
0

ea
xα

α � f(x)� e−s x
α

α � xα−1dx

= (

∫ ∞
0

f(x, r)e−(s−a)
xα

α xα−1dx,

∫ ∞
0

f(x, r)e−(s−a)
xα

α xα−1dx)

=

∫ ∞
0

e−(s−a)
xα

α � xα−1 � f(x)dx = F (s− a).(3)

In order to solve fuzzy conformable fractional differential equations, it is nec-
essary to know the fuzzy fractional conformable Laplace transform of the con-
formable fractional derivative of f .

Theorem 3.6. suppose that f ∈ CF [0,∞) ∩ LF [0,∞), then

Lα[Dαf(x)] = s� Lα[f(x)] � f(0),

if f is α1-differentiable and

Lα[Dαf(x)] = −f(0) � s� Lα[f(x)],

if f is α2-differentiable.

Proof. For arbitrary fixed r ∈ [0, 1], we have:

sLα[f(x, r)] � f(0, r) = [slα[f(x, r)]− f(0, r), lα[f(x, r)]− f(0, r)],

since f is α1-differentiable, we get:

[Dαf(x, r)] = [Dαf(x, r), Dαf(x, r)] = [Dαf(x, r), Dαf(x, r)],
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hence by integration by parts we get:

lα[Dαf(x, r)] =

∫ ∞
0

xα−1Dαf(x, r)e−s
xα

α dx =

∫ ∞
0

xα−1f ′(x, r)x1−αe−s
xα

α dx

= lim
c→∞

[f(x, r)e−s
xα

α ]c0 + s

∫ ∞
0

xα−1f(x, r)e−s
xα

α dx,

= slα[f(x, r)]− f(0, r),(4)

and similarly:

lα[Dαf(x, r)] = lα[Dαf(x, r)] = slα[f(x, r)]− f(0, r),

Then we conclude that:

s� Lα[f(x, r)] � f(0, r) = Lα[Dαf(x, r), Dαf(x, r)] = Lα[Dαf(x, r)].

Now, we assume that f is α2-differentiable, for fixed r ∈ [0, 1], we have

−f(0, r) + s� Lα[f(x, r)] = (−f(0, r) + slα[f(x, r)],−f(0, r) + slα[f(x, r)]]

= (slα[f(x, r)]− f(0, r), slα[f(x, r)]− f(0, r)),(5)

since
lα[Dαf(x, r)] = slα[f(x, r)]− f(0, r),

and
lα[Dαf(x, r)] = slα[f(x, r)]− f(0, r),

then
−f(0, r)− (−slα[f(x, r)]) = Lα[Dαf(x, r), Dαf(x, r)],

so
−f(0, r)− (−sLα[f(x, r)]) = Lα[Dαf(x, r)].

Since f is α2-differentiable, we have:

Dαf(x, r) = [Dαf(x, r), Dαf(x, r)],

hence

−f(0, r) � (−s� Lα[f(x, r)] = [slα[f(x, r)]− f(0, r), slα[f(x, r)]− f(0, r)]

= Lα[Dαf(x, r), Dαf(x, r)]

Now, we present some examples, which indicate how our theorem can be applied
to concrete problems.

Example 3.7. Consider the initial value problem

(6)

{
Dαy(x) = e

xα

α − y(x) + 1, 0 ≤ t ≤ T,
y(0) = (y(0, r), y(0, r)).

By using fuzzy fractional Laplace transform method and applying α2-differentiability,
we have:

Lα[Dαy(x)] = Lα[e
xα

α − y(x) + 1],
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Figure 1. Solid, dash and dot denote upper endpoint of 0-
cuts, 1-cut and upper lowerpoints of 0-cuts in which α = 1

2 ,
respectively.

so

slα[y(x, r)]−Dαy(0, r) = lα[e
xα

α ]− lα[y(x, r)] + lα[1],

slα[y(x, r)]−Dαy(0, r) = lα[e
xα

α ]− lα[y(x, r)] + lα[1],

then

(s+ 1)lα[y(x, r)] = lα[e
xα

α ] + l[1] +Dαy(0, r),

(s+ 1)lα[y(x, r)] = lα[e
xα

α ] + l[1] +Dαy(0, r),

hence we get

lα[y(x, r)] =
1

(s− 1)(s+ 1)
+

1

s(s+ 1)
+
Dαy(0, r)

(s+ 1)
,

lα[y(x, r)] =
1

(s− 1)(s+ 1)
+

1

s(s+ 1)
+
Dαy(0, r)

(s+ 1)
,(7)

consequently, applying inverse of Laplace on the both sides of 7, we have:

y(x, r) =
1

2
(e

xα

α − e
−xα
α ) + (1− e x

α

α ) + e
xα

α Dαy(0, r),

and

y(x, r) =
1

2
(e

xα

α − e
−xα
α ) + (1− e x

α

α ) + e
xα

α Dαy(0, r),

Figure (1) denot upper endpoint of 0-cuts, 1-cut and upper lowerpoints of
0-cuts of the solution of (6) in which α = 1

2 , respectively.
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Example 3.8. Consider the following FCFDE

(8)

{
Dαy(x) = λ� y(x), 0 ≤ t ≤ T,
y(0) = (y(0, r), y(0, r)).

Applying fuzzy fractional Laplace transform on both sides of above equation,
we obtain:

Lα[Dαy(x)] = Lα[λ� y(x)].

Using α1-differentiability and Theorem 7, We have the following:

λlαy(x, r) = slα[y(x, r)]−Dαy(0, r),

λlαy(x, r) = slα[y(x, r)]−Dαy(0, r),

so

(s− λ)lα[y(x, r)] = Dαy(0, r),

(s− λ)lα[y(x, r)] = Dαy(0, r).

After some manipulations, we get:

lα[y(x, r)] =
1

s− λ
Dαy(0, r)

lα[y(x, r)] =
1

s− λ
Dαy(0, r).(9)

Applying inverse of Laplace Fractional transform on the both sides of Equation
9, we get the following:

y(x, r) = eλ
xα

α Dαy(0, r),

y(x, r) = eλ
xα

α Dαy(0, r).

Suppose λ ∈ (−∞, 0), then using α2-differentiability, the solution will obtain
similarly.

Figure (2) denot upper endpoint of 0-cuts, 1-cut and upper lowerpoints of
0-cuts of the solution of (8) in which α = 1

2 and λ = 3, respectively. Now, we
solve one nonlinear fuzzy fractional differential equation.

Example 3.9. Consider the following FCFDE

(10)

{
Dαy(x) = [y(x)]q, q ∈ R, q 6= 0, 1,

y(0) = (y(0, r), y(0, r)).

We make the change of variables;

z(x, r) = [y(x, r)]1−q,

consequently, by using chain rule, we have

Dαy(x, r) =
1

1− q
[z(x, r)]

q
1−qDαz(x, r),
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Figure 2. Solid ,dash and dot denote upper endpoint of 0-
cuts, 1-cut and upper lowerpoints of 0-cuts in which α = 1

2
and λ = 3, respectively.

After an algebraic manipulation, we have:

Dαz(x, r) = 1− q,

then using α1-differentiability and applying the conformable Laplace transform,
we get

lα(Dαz(x, r)) = lα(1− q),
so

slα(z(x, r))− z(0, r) =
1− q
s

,

hence

lα(z(x, r)) =
(1− q)
s2

+
z(0, r)

s
.

Applying the inverse conformable Laplace transform we get:

z(x, r) =
(1− q)xα

αΓ(2)
+ z(0, r),

so

y(x, r) = (
(1− q)xα

αΓ(2)
+ y1−q(0, r))

1
1−q .

Similarly,if we make the change of variables z(x, r) = [y(x, r)]1−q, then we get

y(x, r) = (
(1− q)xα

αΓ(2)
+ y1−q(0, r))

1
1−q .

Figure (3) denot upper endpoint of 0-cuts, 1-cut and upper lowerpoints of
0-cuts of the solution of (10) in which α = 1

2 and q = 3, respectively.
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Figure 3. Solid ,dash and dot denote upper endpoint of 0-
cuts, 1-cut and upper lowerpoints of 0-cuts in which α = 1

2
andq = 3, respectively.

4. Conclusion

We have investigated Fuzzy Fractional Conformable Laplace transforms.
The conformable Laplace Transform introduced here is a general concept, being
also practically applicable.
For further research we propose to extend the results of present paper and also
to solve equations involving special functions for example Hyperbolic functions.
Moreover one can find a new applications for Fuzzy conformable fractional
Laplace Transform like as solving fuzzy output equation, fuzzy input equation,
transfer function, etc.
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