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COINCIDENCE POINT RESULTS FOR (ϕ, ψ)-WEAK

CONTRACTIVE MAPPINGS IN CONE 2-METRIC SPACES

Ziaul Islam, Muhammad Sarwar and Cemil Tunç∗

Abstract. In the present paper, utilizing (ϕ, ψ)-weak contractive condi-
tions, unique �xed point and some coincidence point results have been
studied in the context of cone 2- metric spaces. Also, our obtained re-
sults generalize some results from cone metric space to cone 2-metric
space. For the authenticity of the presented work, a non trivial example
is also provided.

1. Introduction and Preliminaries

A contraction mapping is D from a space (S, d) to itself, if there exists η
with 0 ≤ η < 1 such that

(1) d(Ds,Dt) ≤ η d(s, t) for all s, t ∈ S.

Theorem 1.1. [1] A mapping D has unique �xed point in S if D satisfy
(1) and (S, d) is complete metric space.

The Banach contraction principle (BCP) [1] is usually expanded and im-
proved in two ways, either by generalizing the contraction condition or by
replacing complete metric space with some certain generalized spaces. In this
way, a lot of works has been reported in the literature on this line by using
di�erent classes of contraction type conditions. In Hilbert spaces, the study of
single-valued maps satisfying weak contractions was �rst initiated in 1997 by
Alber and Guarre-Delabriere [2] which generalized the contraction principle of
Banach. While Rhoades [3] proved that Alber [2] most results are true for any
Banach space.

Definition 1.2. The mapping D : (S, d) → (S, d) is a weak contraction
for all s, t belongs to the complete metric space (S, d) such that

(2) d(Ds,Dt) ≤ d(s, t)− ϕ(d(s, t)),
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where ϕ : [0,∞) → [0,∞) is continuous and monotone non-decreasing with
ϕ(ξ) = 0 i� ξ = 0.

If 0 ≤ η < 1 and ϕ(ξ) = (1 − η)ξ, then (1) is a special case of (2). In this
linkage, Rhoades [3] proved the preceding result.

Theorem 1.3. ([3]) Let metric space (S, d) be complete and mapping
D : (S, d) → (S, d) satisfying (2), then D has a unique �xed point.

The weak contractive condition (ϕ-weak contraction [3]) was extended for
two mappings by Song [4] and Zhang and Song [5].

In 2008, Dutta and Chaudhary [6] generalized (1) and (2) by using the
concept of ψ functions and demonstrated a �xed point theorem involving the
existence of a unique �xed point.

Theorem 1.4. ([6]) Let metric space (S, d) be complete and mapping
D : (S, d) → (S, d) satisfy

(3) ψ
(
d(Ds,Dt)

)
≤ ψ

(
d(s, t)

)
− ϕ

(
d(s, t)

)
for all s, t ∈ S,

where ψ, ϕ : [0,∞) → [0,∞) are continuous, monotone non-decreasing with
ψ(ξ) = 0 = ϕ(ξ) i� ξ = 0. Then D possesses a unique �xed point.

To put ψ(ξ) = ξ in (3), one can get (2) for all ξ ≥ 0.
After Dutta and Chaudhary [6], Dori¢ [7] advanced the abstraction of (ϕ, ψ)−weak
contractive mappings and studied common �xed point results under this con-
traction. In the recent years, many authors used varieties of weak contractive
conditions to illustrate the existence of �xed point theorems in di�erent set-
tings. For the readers, we refer to ([8], [9], [10], [13], [14], [11], [15], [16], [17])
and the references therein.

In 2007, a new generalized space was reintroduced by Huang and Zhang
[18] called cone metric space which extends the idea of a metric to cone metric
and also presented some �xed point results for contractive type mappings in
the underlying spaces.

Let 0ER
be the zero element of real Banach space ER, then P ⊆ ER is called

cone if:

(p1). P is non-empty, closed and P ̸= {0ER
},

(p2). for all s, t ∈ P and for all a, b ∈ R+, as+ bt ∈ P,
(p3). if w ∈ P ∩ (−P), then w = 0ER

.

A partial order 4 is de�ne in ER with respect to P by s 4 t if and only if
t − s ∈ P. Further, s ≺ t implies s 4 t but s ̸= t, while s ≪ t stands for
t− s ∈ intP, where intP is the interior of P. We called P normal, if for a real
number k > 0 and for all s, t ∈ ER

0ER
4 s 4 t implies ∥s∥ 6 k ∥t∥ .

If for least k, the above is true then k is known the normal constant of P. The
cone P is regular if for every increasing sequence which is bounded from above
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is convergent, that is, if {vn} is a sequence in ER and

v1 4 v2 4 · · · 4 vn 4 · · · 4 u

for some u ∈ ER, then there exists v0 ∈ ER such that ∥vn − v0∥ → 0ER
(n →

∞). The cone P is also regular if it is convergent for every decreasing sequence
which is bounded from below. The cone P is solid if intP ̸= ∅.
In the rest of this paper ER stands for a real Banach space, P a solid cone in
ER and 4 a partial order in ER w.r.t the cone P.

Definition 1.5. ([18]) Let S ̸= ∅ and d : S × S → ER a function
satisfying:

(c1). for all s, t ∈ S, 0ER
4 d(s, t) and d(s, t) = 0ER

i� s = t;
(c2). d(s, t) = d(t, s) for all s, t ∈ S;
(c3). d(s, t) 4 d(s, w) + d(w, t) for all s, w, t ∈ S.

Then the function d is cone metric and (S, d) is cone metric space.

Example 1.6. ([18]) Let ER = R2 and P = {(s, t) ∈ ER : s, t ≥ 0}. Take
d : S × S → ER as d(s, t) = (|s − t|, λ|s − t|), where λ ≥ 0 and S = R. Then
(S, d) is a cone metric space.

In [19], Gähler investigated the notion of 2-metric spaces. Let S ̸= ∅,
d : S × S × S → R+ satisfy the following:

(t1). for s, t ∈ S, there is a point w ∈ S with at least two of s, t, w are not
equal, then d(s, t, w) ̸= 0;

(t2). d(s, t, w) = 0 i� at least two of s, t, w are equal;
(t3). for all s, t, w ∈ S, d(s, t, w) = d(p(s, t, w)) where p(s, t, w) stands for all

permutations of s, t, w;
(t4). for all s, t, w, j ∈ S, d(s, t, w) ≤ d(s, t, j) + d(s, j, w) + d(j, t, w).

Then the function d is 2-metric and (S, d) is a 2-metric space.
Recently, a new generalization is done in 2012 by Singh et al. [20] called

cone 2-metric space by merging the concepts of cone and 2-metric. For other
related works, see [21], [22], [23] and references therein.

Definition 1.7. ([20]) Let S ̸= ∅ and assume that the mapping d :
S × S × S → P satisfying:

(s1). for all s, t, w ∈ S, 0ER
4 d(s, t, w) and d(s, t, w) = 0ER

i� at least two of
s, t, w are equal;

(s2). for all s, t, w ∈ S, d(s, t, w) = d(p(s, t, w)) where p(s, t, w) stands for all
permutations of s, t, w;

(s3). d(s, t, w) 4 d(s, t, j) + d(s, j, w) + d(j, t, w) for all s, t, w, j ∈ S.

Then the function d is cone 2-metric and (S, d) is cone 2-metric space.

Example 1.8. ([20]) Let ER = R2, P = {(s, t) ∈ ER : s, t ≥ 0ER
}

and d : S × S × S → ER be de�ned by d(s, t, w) = (ϱλ, nϱ), where ϱ =
min(|s− t|, |t− w|, |s− w|), n and λ are �xed positive integers. Then (S, d) is
cone 2-metric space.
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Definition 1.9. ([20]) Let cone 2-metric space be (S, d) and P ⊂ ER.
Let {un} be a sequence in (S, d), Then

(i) {un} is convergent to u0 ∈ P (i.e limn→∞ un = u0 or un → u0 as n→ ∞)
if for each c ∈ ER with 0ER

≪ c, there is n0 ∈ N such that d(un, u0, w) ≪
c for all w ∈ S and for all n > n0.

(ii) {un} is Cauchy sequence if for every c ∈ intP, there is n0 ∈ N such that
d(un, um, w) ≪ c for all w ∈ S and for all n,m ≥ n0.

(iii) (S, d) is complete if every Cauchy sequence is convergent.

Definition 1.10. ([24]) Let S ̸= ∅ and f1, f2 : S → S. If s = f1(t) =
f2(t) for some t ∈ S, then t is coincidence point and s is point of coincidence
of f1 and f2. If f1, f2 commute at t then f1, f2 are weakly compatible.

Lemma 1.11. ([25]) Let S ̸= ∅ and f1, f2 : S → S be weakly compatible.
If s = f1(t) = f2(t) for some t ∈ S and s is unique, then s is unique common
�xed point for f1 and f2.

Lemma 1.12. Let P ⊂ ER a cone and s, t, w ∈ ER.

(i) If s 4 t and t≪ w, then s≪ w ([26]).
(ii) If s≪ t and t≪ w, then s≪ w ([26]).
(iii) If 0ER

4 s 4 t and a ∈ R+, then 0ER
4 as 4 at ([26]).

(iv) If 0ER
4 sn 4 tn for n ∈ N and limn→∞ sn = s0, limn→∞ tn = t0, then

0ER
4 s0 4 t0 ([26]).

(v) If s 4 t+ w and 0ER
≪ w, then s 4 t ([26]).

(vi) P is normal i� sn 4 tn 4 wn and if limn→∞ sn = limn→∞ wn = u0, then
limn→∞ tn = u0 ([28]).

Definition 1.13. ([27]) Let S be a partially order set w.r.t the relation
4. Then a function D from S to itself is monotone increasing if for given
s, t ∈ S with s 4 t, we have D(s) 4 D(t).

2. Main results

In the present section, we �rstly prove a lemma which will help us in proving
our results. Further, in our �rst Theorem we have studied �xed point for a
mapping satisfying (ϕ, ψ)-weak contraction. Secondly, the remaining theorems
are concerns with common and coincidence points for mappings satisfy certain
contractive type conditions. In at last, a non-trivial example is given to validate
our main result.

Lemma 2.1. Let cone 2-metric space be (S, d) and for a regular cone P,
d(s, t, w) ∈ intP with at least two of s, t, w are not equal for all s, t, w ∈ S. Let
ϕ be a function from intP ∪ {0ER

} to itself satisfy

(a). ϕ(ξ) = 0ER
i� ξ = 0ER

;
(b). ϕ(ξ) ≪ ξ, for ξ ∈ intP;
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(c). either ϕ(ξ) 4 d(s, t, w) or d(s, t, w) 4 ϕ(ξ), for ξ ∈ intP ∪ {0ER
} and for

all s, t, w ∈ S.

Let {On} be a sequence for which {d(On, On+1, w)} is a monotonic decreasing
sequence in S for all w ∈ S. Then there is p0 ∈ P such that {d(On, On+1, w)}
is convergent to either p0 = 0ER

or p0 ∈ intP.

Proof. Let {On} be a sequence in S and P be a regular cone. Assume
that {d(On, On+1, w)} is monotonic decreasing for a sequence {On} in S and
0ER

4 d(On, On+1, w) for all n ∈ N and w ∈ S, then there exists p0 ∈ P such
that

(4) d(On, On+1, w) → po as n→ ∞.

If d(On, On+1, w) = 0ER
for some n ∈ N, then surely p0 = 0ER

. Hence we
assume that d(On, On+1, w) ̸= 0ER

for all n ∈ N and w ∈ S. Also, according to
the condition of the lemma, d(On, On+1, w) ∈ intP. Let p0 ̸= 0ER

. The cone

P is regular, so it is normal. Let C = {ξ ∈ intP : ∥ξ∥ < ∥p0∥
k }, where k is the

normal constant of P. For all α ∈ R+ − {0} with α < ∥p0∥
k and ξ ∈ intP, we

have
∥∥∥ αξ
∥ξ∥

∥∥∥ = α < ∥p0∥
k . This implies that αξ

∥ξ∥ ∈ C, therefore C is non-empty.

Next, we a�rm that for every ξ ∈ C, ϕ(ξ) 4 d(On, On+1, w) for all n ∈ N and
for all w ∈ S. Otherwise, there exists ξ0 ∈ C and a positive integer m such that

(5) d(Om, Om+1, w) 4 ϕ(ξ0) (using (c) property of ϕ in the lemma).

Now, for all n ≥ m, {d(On, On+1, w)} being monotonic decreasing, therefore,
we have

(6) d(On, On+1, w) 4 d(Om, Om+1, w) 4 ϕ(ξ0),

which implies that d(On, On+1, w) 4 ϕ(ξ0) for all n ≥ m and w ∈ S. As n→ ∞
in d(On, On+1, w) 4 ϕ(ξ0), using (b) property of ϕ and part (i) of lemma 1.12,
we have p0 ≪ ξ0. Hence ∥p0∥ ≤ k ∥ξ0∥, for normal constant k of P. Which is
a contradiction to the fact that ξ0 ∈ C. Thus, for all ξ ∈ C and n ∈ N

(7) ϕ(ξ) 4 d(On, On+1, w) and for all w ∈ S.

As n → ∞ in above we have ϕ(ξ) 4 p0. Therefore, for some p′ ∈ P, p0 =
ϕ(ξ) + p′ for all ξ ∈ C. Now, 0ER

4 p′ ≪ ϕ(ξ) + p′ (because for every ξ ∈ C,
ϕ(ξ) ∈ intP). Then by (i) of lemma 1.12, we have

(8) 0ER
≪ ϕ(ξ) + p′ = p0 (because p0 = ϕ(ξ) + p′).

Therefore, p0 ∈ intP.

Theorem 2.2. Let cone 2-metric space (S, d) be complete and for regular
cone P, d(s, t, w) ∈ intP with at least two of s, t, w are not equal for all s, t, w ∈
S. Further, if a mapping D : S → S is such that

(9) ψ
(
d(Ds,Dt, w)

)
4 ψ

(
d(s, t, w)

)
− ϕ

(
d(s, t, w)

)
,
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where ψ from P to itself and ϕ from intP ∪ {0ER
} to itself are two continuous

functions such that

(a). ψ is monotone increasing;
(b). ψ(ξ) = ϕ(ξ) = 0ER

i� ξ = 0ER
;

(c). ϕ(ξ) ≪ ξ, for ξ ∈ intP;
(d). ϕ(ξ) 4 ϕ

(
d(s, t, w)

)
or ϕ

(
d(s, t, w)

)
≪ ϕ(ξ) for ξ ∈ intP ∪ {0ER

} and
s, t, w ∈ S.

Then D has a unique �xed point in S.

Proof. Let O0 ∈ S. The sequence {On} is constructed by On+1 = DOn. If
On = On+1 for some n ∈ N, then On is �xed point of D.
We assume for all n ∈ N, On ̸= On+1. Then by (9) we have

ψ
(
d(On+1, On, w)

)
= ψ

(
d(DOn,DOn−1, w)

)
4 ψ

(
d(On, On−1, w)

)
− ϕ

(
d(On, On−1, w)

)
.

(10)

Set ∆n = d(On, On−1, w). Then by (10) we have ψ
(
∆n+1

)
4 ψ(∆n)−ϕ(∆n) 4

ψ(∆n). But since ψ is monotone increasing, therefore ∆n+1 4 ∆n for n ∈ N. It
indicates that the sequence {∆n} is decreasing monotonically and so by lemma
2.1, there exists p0 ∈ P with either p0 = 0ER

or p0 ∈ intP such that

(11) lim
n→∞

∆n = p0.

Letting n→ ∞ in (10) and using the continuities of ϕ and ψ, we have ψ(p0) 4
ψ(p0)− ϕ(p0), which implies that −ϕ(p0) ∈ P and hence p0 = 0ER

. Therefore
(11) becomes

(12) lim
n→∞

∆n = 0ER
.

Next we a�rm that {On} is a Cauchy sequence. If not, there exists c ∈ ER

with 0ER
≪ c and for all n0 ∈ N, there exist n,m ∈ N with n > m ≥ n0 such

that d(Om, On, w) ̸≪ ϕ(c). Using (d), we have d(Om, On, w) < ϕ(c) and so
there exists {Om(l)} and {On(l)} of {On} such that d(Om(l), On(l), w) < ϕ(c)
for n(l) > m(l) > l and for all w ∈ S. Assume for smallest such positive integer
n(l) with n(l) > m(l) > l such that

(13) d(Om(l), On(l), w) < ϕ(c) and d(Om(l), On(l)−1, w) ≪ ϕ(c).

Now consider above we have

ϕ(c) 4 d(Om(l), On(l), w)

4 d(Om(l), On(l), On(l)−1) + d(Om(l), On(l)−1, w) + d(On(l)−1, On(l), w)

4 d(Om(l), On(l), On(l)−1) + ϕ(c) + d(On(l)−1, On(l), w).

By taking l → ∞ in above inequality, using (12) and Lemma 1.12, we have

(14) lim
l→∞

d(Om(l), On(l), w) = ϕ(c).
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Next consider the following four inequalities, that is

d(Om(l), On(l), w) 4 d(Om(l), On(l), Om(l)−1)

+ d(Om(l), Om(l)−1, w) + d(Om(l)−1, On(l), w),
(15)

d(Om(l)−1, On(l), w) 4 d(Om(l)−1, On(l), Om(l))

+ d(Om(l)−1, Om(l), w) + d(Om(l), On(l), w),
(16)

d(Om(l)−1, On(l)−1, w) 4 d(Om(l)−1, On(l)−1, On(l))

+ d(Om(l)−1, On(l), w) + d(On(l), On(l)−1, w),
(17)

d(Om(l)−1, On(l), w) 4 d(Om(l)−1, On(l), On(l)−1)

+ d(Om(l)−1, On(l)−1, w) + d(On(l)−1, On(l), w).
(18)

Letting l → ∞ in (15-18), using (12) and (14), we get

(19) lim
l→∞

d(Om(l)−1, On(l)−1, w) = ϕ(c).

As ϕ(c) 4 d(Om(l), On(l), w) and ψ is monotone increasing, therefore

ψ
(
ϕ(c)

)
4 ψ

(
d(Om(l), On(l), w)

)
= ψ

(
d(DOm(l)−1,DOn(l)−1, w)

)
4 ψ

(
d(Om(l)−1, On(l)−1, w)

)
− ϕ

(
d(Om(l)−1, On(l)−1, w)

)
.

(20)

By taking l → ∞ in above inequality, using (19) and continuity property of ϕ,
ψ, we get

(21) ψ
(
ϕ(c)

)
≼ ψ

(
ϕ(c)

)
− ϕ

(
ϕ(c)

)
.

Which is not true by de�nition of ϕ. Therefore, {On} is a Cauchy sequence
in S. By completeness of S, there exists O0 ∈ S such that limn→∞On = O0.
Now consider

ψ
(
d(On,DO0, w)

)
= ψ

(
d(DOn−1,DO0, w)

)
4 ψ

(
d(On−1, O0, w)

)
− ϕ

(
d(On−1, O0, w)

)
.

(22)

As ϕ, ψ are continuous and by taking n→ ∞ in above, we have

(23) ψ
(
d(O0,DO0, w)

)
4 0ER

.

But ψ
(
d(O0,DO0, w)

)
< 0ER

, this implies that ψ
(
d(O0,DO0, w)

)
= 0ER

, and
so d(O0,DO0, w) = 0ER

. Hence DO0 = O0, that is O0 is a �xed point of D in
S.
For uniqueness of O0 we let t0 ∈ S be another �xed point of D with (O0 ̸= t0)
in S then

ψ
(
d(O0, t0, w)

)
= ψ

(
d(DO0,Dt0, w)

)
4 ψ

(
d(O0, t0, w)

)
− ϕ

(
d(O0, t0, w)

)
.

(24)



312 Ziaul Islam, Muhammad Sarwar and Cemil Tunç

As (O0 ̸= t0), therefore ϕ
(
d(O0, t0, w)

)
∈ intP, which from above implies that

ϕ
(
d(O0, t0, w)

)
= 0ER

, and hence O0 = t0. It completes the proof.

On taking ψ(ξ) = ξ for ξ ≥ 0ER
in Theorem 2.2, then we have the following

corollary.

Corollary 2.3. Let cone 2-metric space (S, d) be complete and for reg-
ular cone P, d(s, t, w) ∈ intP with at least two of s, t, w are not equal for all
s, t, w ∈ S. If a mapping D : S → S is such that

(25) d(Ds,Dt, w) 4 d(s, t, w)− ϕ
(
d(s, t, w)

)
,

for s, t, w ∈ S, where ϕ is de�ned with given properties in Theorem 2.2. Then
D has a unique �xed point in S.

Remark 2.4. In fact, by taking ϕ(ξ) = Kξ where 0 < K < 1 then
corollary 2.3 generalize and improve corollary 2.2 of [20].

Theorem 2.5. Let cone 2-metric space be (S, d) and for regular cone P,
d(s, t, w) ∈ intP with at least two of s, t, w are not equal for all s, t, w ∈ S. Let
R,K : S → S are such that

(26) ψ
(
d(Rs,Rt, w)

)
4 ψ

(
d(Ks,Kt, w)

)
− ϕ

(
d(Ks,Kt, w)

)
for all s, t, w ∈ S, where ϕ and ψ are de�ned in Theorem 2.2 with given prop-
erties.
If K(S) ⊆ S is complete and R(S) ⊆ K(S), then R, K has unique point of
coincidence.

Proof. Let O0 ∈ S. SinceR(S) ⊆ K(S), {On} is constructed in S asROn =
KOn+1 for n ∈ N ∪ {0}. If for some n0 ∈ N ∪ {0}, we have ROn0

= ROn0+1,
then On0+1 is a point of coincidence of R and K.
Hence, we shall assume that ROn ̸= ROn+1 for all n ∈ N ∪ {0}. By (26) we
have

ψ
(
d(ROn+2,ROn+1, w)

)
4 ψ

(
d(KOn+2,KOn+1, w)

)
− ϕ

(
d(KOn+2,KOn+1, w)

)
for all w ∈ S, and so

ψ
(
d(ROn+2,ROn+1, w)

)
4 ψ

(
d(ROn+1,ROn, w)

)
− ϕ

(
d(ROn+1,ROn, w)

)
.

(27)

Using de�nition of ϕ and monotone increasing property of ψ, we have

(28) d(ROn+2,ROn+1, w) 4 d(ROn+1,ROn, w).

Therefore, the sequence {d(ROn+1,ROn, w)} is decreasing monotonically. Hence,
by Lemma 2.1 there exists p0 ∈ P with either p0 = 0ER

or p0 ∈ intP and

(29) d(ROn+1,ROn, w) → p0 as n→ ∞.
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Letting n→ ∞ in (27) and using continuities of ϕ and ψ, we have

(30) ψ(p0) 4 ψ(p0)− ϕ(p0).

The above is true only when p0 = 0ER
. Therefore, for all w ∈ S (29) becomes

(31) d(ROn+1,ROn, w) → 0ER
as n→ ∞.

Next, we a�rm that {ROn} is a Cauchy sequence. In case if it is not, then
there exist c ∈ ER with 0ER

≪ c and for all n0 ∈ N there exists n,m ∈ N with
n > m ≥ n0 such that

(32) d(ROm,ROn, w) ̸≪ ϕ(c).

Using (d) we have d(ROm,ROn, w) < ϕ(c). Hence, there exist {ROm(l)} and
{ROn(l)} of {ROn} such that d(ROm(l),ROn(l), w) < ϕ(c) and n(l) > m(l) > l
for all w ∈ S.
Assume for smallest such positive integer n(l) with n(l) > m(l) > l such that

(33) d(ROm(l),ROn(l), w) < ϕ(c) and d(ROm(l),ROn(l)−1, w) ≪ ϕ(c).

Now by considering above we have

ϕ(c) 4 d(ROm(l),ROn(l), w)

4 d(ROm(l),ROn(l),ROn(l)−1) + d(ROm(l),ROn(l)−1, w)

+ d(ROn(l)−1,ROn(l), w).

By using (33) and part (v) of Lemma 1.12, we have

ϕ(c) 4 d(ROm(l),ROn(l), w)

4 d(ROm(l),ROn(l),ROn(l)−1) + ϕ(c) + d(ROn(l)−1,ROn(l), w).

As l → ∞ in above and using (31), we get for all w ∈ S

(34) lim
l→∞

d(ROm(l),ROn(l), w) = ϕ(c).

Next consider the following four inequalities, that is

d(ROm(l),ROn(l), w)

4 d(ROm(l),ROn(l),ROm(l)+1) + d(ROm(l),ROm(l)+1, w)

+ d(ROm(l)+1,ROn(l), w),

d(ROm(l)+1,ROn(l), w)

4 d(ROm(l)+1,ROn(l),ROm(l)) + d(ROm(l)+1,ROm(l), w)

+ d(ROm(l),ROn(l), w),

d(ROm(l)+1,ROn(l)+1, w)

4 d(ROm(l)+1,ROn(l)+1,ROn(l)) + d(ROm(l)+1,ROn(l), w)

+ d(ROn(l),ROn(l)+1, w),
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d(ROm(l)+1,ROn(l), w)

4 d(ROm(l)+1,ROn(l),ROn(l)+1) + d(ROm(l)+1,ROn(l)+1, w)

+ d(ROn(l)+1,ROn(l), w).

As l → ∞ in above four listed inequalities, using (31) and (34), we get

(35) lim
l→∞

d(ROm(l)+1,ROn(l)+1, w) = ϕ(c).

Substituting s = Om(l)+1 and t = On(l)+1 in (26)

ψ
(
d(ROm(l)+1,ROn(l)+1, w)

)
4

ψ
(
d(KOm(l)+1,KOn(l)+1, w)

)
− ϕ

(
d(KOm(l)+1,KOn(l)+1, w)

)
.

That is

ψ
(
d(ROm(l)+1,ROn(l)+1, w)

)
4 ψ

(
d(ROm(l),ROn(l), w)

)
− ϕ

(
d(ROm(l),ROn(l), w)

)
.

Thus we have, as l → ∞ in above and using (34), (35) and continuities of ϕ
and ψ

ψ
(
ϕ(c)

)
4 ψ

(
ϕ(c)

)
− ϕ

(
ϕ(c)

)
,

which contradicts the fact that 0ER
≪ c.

Therefore, {ROn} is a Cauchy sequence in K(S). As K(S) is complete, there
is O ∈ K(S) such that

(36) ROn → O as n→ ∞.

Since O ∈ K(S), there is e ∈ S such that Ke = O. Now by putting s = On+1

and t = e in (26), we have

(37) ψ
(
d(ROn+1,Re, w)

)
4 ψ

(
d(KOn+1,Ke, w)

)
− ϕ

(
d(KOn+1,Ke, w)

)
.

That is

(38) ψ
(
d(ROn+1,Re, w)

)
4 ψ

(
d(ROn, O,w)

)
− ϕ

(
d(ROn, O,w)

)
.

By letting n → ∞ in above, using (36) and properties of ϕ and ψ we have
ψ
(
d(O,Re, w)

)
4 0ER

, which is true unless ψ
(
d(O,Re, w)

)
= 0ER

, and so that
Re = O. Hence, Re = Ke = O. That is, O is a point of coincidence and e is a
coincidence point of R and K.

Further, we reveal that the point of coincidence O is unique. For this, let
e1 ∈ S be another point such that Re1 = Ke1 = O1 and assume that O ̸= O1.
Putting s = e and t = e1 in (26)

(39) ψ
(
d(Re,Re1, w)

)
4 ψ

(
d(Ke,Ke1, w)

)
− ϕ

(
d(Ke,Ke1, w)

)
.

That is

(40) ψ
(
d(O,O1, w)

)
4 ψ

(
d(O,O1, w)

)
− ϕ

(
d(O,O1, w)

)
,

which is true unless O = O1.
Hence, the point of coincidence O is unique for R and K.
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Theorem 2.6. Let cone 2-metric space be (S, d) and for regular cone P,
d(s, t, w) ∈ intP with at least two of s, t, w are not equal for all s, t, w ∈ S. Let
R,K : S → S are such that

(41) ψ
(
d(Rs,Rt, w)

)
4 ψ

(1
2

(
d(Rs,Ks, w)+d(Rt,Kt, w)

))
−ϕ

(
d(Ks,Kt, w)

)
for all s, t, w ∈ S, where ϕ and ψ are de�ned in Theorem 2.2 with given prop-
erties.
If K(S) ⊆ S is complete and R(S) ⊆ K(S), then R, K has unique point of
coincidence.

Proof. The sequence {On} is constructed in the same manner as in Theorem
2.5. Also, we prove with the help of (41) that for all w ∈ S, the sequence
{d(ROn+1,ROn, w)} is monotonically decreasing and

(42) d(ROn+1,ROn, w) → 0ER
as n→ ∞.

Next, we claim that {ROn} is a Cauchy sequence. If it is not the case, then
using the same method as given in Theorem 2.5, there exist two subsequences
{ROm(l)} and {ROn(l)} of {ROn} with

(43) lim
l→∞

d(ROm(l),ROn(l), w) = ϕ(c)

and

(44) lim
l→∞

d(ROm(l)+1,ROn(l)+1, w) = ϕ(c).

By putting s = Om(l)+1 and t = On(l)+1 in (41), we have

ψ
(
d(ROm(l)+1,ROn(l)+1, w)

)
4 ψ

(1
2

(
d(ROm(l)+1,KOm(l)+1, w) + d(ROn(l)+1,KOn(l)+1, w)

))
− ϕ

(
d(KOm(l)+1,KOn(l)+1, w)

)
.

That is

ψ
(
d(ROm(l)+1,ROn(l)+1, w)

)
4 ψ

(1
2

(
d(ROm(l)+1,ROm(l), w) + d(ROn(l)+1,ROn(l), w)

))
− ϕ

(
d(ROm(l),ROn(l), w)

)
.

By letting l → ∞ in above, using (42), (43), (44) and properties of ϕ and ψ,
we get

ψ
(
ϕ(c)

)
4 −ϕ

(
ϕ(c)

)
,

which contradicts the fact that 0ER
≪ c, and hence {ROn} is a Cauchy

sequence in K(S). As K(S) is complete, there exists O ∈ K(S) such that

(45) ROn → O as n→ ∞.
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Since O ∈ K(S), there is e ∈ S such that Ke = O. By putting s = On+1 and
t = e in (41)

ψ
(
d(ROn+1,Re, w)

)
4ψ

(1
2

(
d(ROn+1,KOn+1, w) + d(Re,Ke, w)

))
− ϕ

(
d(KOn+1,Ke, w)

)
.

Thus

ψ
(
d(ROn+1,Re, w)

)
4 ψ

(1
2

(
d(ROn+1,ROn, w)+d(Re,O,w)

))
−ϕ

(
d(ROn, O,w)

)
.

By letting n→ ∞, using (42), (45) and properties of ϕ and ψ, we get

ψ
(
d(O,Re, w)

)
4 ψ

(1
2
d(Re,O,w)

)
,

that is

d(O,Re, w) 4 1

2
d(Re,O,w), (by monotonically increasing property of ψ)

which is contradiction unless Re = O and therefore Re = Ke = O. Thus O is
a point of coincidence and e is a coincidence point of R and K.

Uniqueness of O follows from the proof of Theorem 2.5 and condition (41).

Theorem 2.7. Let cone 2-metric space be (S, d) and for regular cone P,
d(s, t, w) ∈ intP with at least two of s, t, w are not equal for all s, t, w ∈ S. Let
R,K : S → S are such that

(46) ψ
(
d(Rs,Rt, w)

)
4 ψ

(1
2

(
d(Rs,Kt, w)+d(Rt,Ks, w)

))
−ϕ

(
d(Ks,Kt, w)

)
for all s, t, w ∈ S, where ϕ and ψ are de�ned in Theorem 2.2 with given prop-
erties.
If K(S) ⊆ S is complete and R(S) ⊆ K(S), then R, K has unique point of
coincidence.

Proof. The sequence {On} is constructed in the same manner as in Theorem
2.5. Also, as showed in Theorem 2.5, we prove with the help of (46) that for
all w ∈ S, the sequence {d(ROn+1,ROn, w)} is monotonically decreasing and

(47) d(ROn+1,ROn, w) → 0ER
as n→ ∞.

If {ROn} is not a Cauchy sequence, then utilizing the same method as given
in the proof of Theorem 2.5 that there are {ROm(l)} and {ROn(l)} of {ROn},
for which we can obtain

(48) lim
l→∞

d(ROm(l),ROn(l), w) = ϕ(c),

and

(49) lim
l→∞

d(ROm(l)+1,ROn(l)+1, w) = ϕ(c).
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Now consider the following inequalities, that is

d(ROm(l),ROn(l), w)

4 d(ROm(l),ROn(l),ROn(l)+1) + d(ROm(l),ROn(l)+1, w)

+ d(ROn(l)+1,ROn(l), w),

d(ROm(l),ROn(l)+1, w)

4 d(ROm(l),ROn(l)+1,ROn(l)) + d(ROm(l),ROn(l), w)

+ d(ROn(l),ROn(l)+1, w),

d(ROm(l),ROn(l), w)

4 d(ROm(l),ROn(l),ROm(l)+1) + d(ROm(l),ROm(l)+1, w)

+ d(ROm(l)+1,ROn(l), w),

d(ROm(l)+1,ROn(l), w)

4 d(ROm(l)+1,ROn(l),ROm(l)) + d(ROm(l)+1,ROm(l), w)

+ d(ROm(l),ROn(l), w).

Taking l → ∞ in the four inequalities listed above and using (47) and (48), we
get

(50) lim
l→∞

d(ROm(l),ROn(l)+1, w) = ϕ(c),

and

(51) lim
l→∞

d(ROm(l)+1,ROn(l), w) = ϕ(c).

Putting s = Om(l)+1 and t = On(l)+1 in (46), we have

ψ
(
d
(
ROm(l)+1,ROn(l)+1, w

))
4 ψ

(1
2

(
d(ROm(l)+1,KOn(l)+1, w) + d(ROn(l)+1,KOm(l)+1, w)

))
− ϕ

(
d(KOm(l)+1,KOn(l)+1, w)

)
.

Thus we have

ψ
(
d
(
ROm(l)+1,ROn(l)+1, w

))
4 ψ

(1
2

(
d(ROm(l)+1,ROn(l), w) + d(ROn(l)+1,ROm(l), w)

))
− ϕ

(
d(ROm(l),ROn(l), w)

)
.

By letting l → ∞ in above inequality, using (48), (49), (50), (51) and continu-
ities of ϕ and ψ, we get

(52) ψ
(
ϕ(c)

)
4 ψ

(
ϕ(c)

)
− ϕ

(
ϕ(c)

)
which contradicts the fact that 0ER

≪ c, and therefore {ROn} is a Cauchy
sequence in K(S). As K(S) is complete, then there is O ∈ K(S) such that

(53) ROn → O as n→ ∞.
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Since O ∈ K(S), there should be a e ∈ S such that Ke = O. Now, by replacing
s = On+1 and t = e in (46), we have

ψ
(
d(ROn+1,Re, w)

)
4 ψ

(1
2

(
d(ROn+1,Ke, w) + d(Re,KOn+1, w)

))
− ϕ

(
d(KOn+1,Ke, w)

)
that is

ψ
(
d(ROn+1,Re, w)

)
4 ψ

(1
2

(
d(ROn+1, O,w) + d(Re,ROn, w)

))
− ϕ

(
d(ROn, O,w)

)
.

As n→ ∞ in above inequality, using (53) and properties of ϕ and ψ, we get

ψ
(
d(O,Re, w)

)
4 ψ

(1
2
d(Re,O,w)

)
,

that is

d(O,Re, w) 4 1

2
d(Re,O,w) (by monotonically increasing property of ψ)

which is a contradiction unless Re = O and hence Re = Ke = O. Thus, O is
a point of coincidence and e is a coincidence point of R and K.

Uniqueness of O follows from the proof of Theorem 2.5 and condition (46).

Theorem 2.8. If R and K are weakly compatible in Theorems 2.5, 2.6,
2.7, then R and K has a unique common �xed points.

Proof. By seeing lemma 1.11, one can easily proof the results.

Now, we here illustrate a non trivial example which validate our main result.
i.e Theorem 2.2.

Example 2.9. Let A = {(u, 0) ∈ R2 : u ∈ [0, 1]}, B = {(0, u) ∈ R2 : u ∈
[0, 1]} and S = A ∪ B. Let ER = R2 and P = {(s, t) ∈ R2 : s, t ≥ 0} be a
regular cone in ER.
The mapping d : S × S × S → ER is de�ned by d(s, t, w) = ρ(u1, u2), where
s, t, w ∈ S and u1, u2 ∈ {s, t, w} are such that

∥u1 − u2∥ = min{∥s− t∥ , ∥t− w∥ , ∥s− w∥}
and

ρ(u1, u2) =

(
5

4
|u1 − u2|, |u1 − u2|

)
(54)

ρ(u1, u2) =

(
|u1 − u2|,

3

4
|u1 − u2|

)
(55)

ρ(u1, u2) = ρ(u2, u1) =

(
5

4
u1 + u2, u1 +

3

4
u2

)
.(56)
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Then (S, d) is a complete cone 2-metric space and for all s, t, w ∈ S, d(s, t, w) ∈
intP with atleast two of s, t, w are not equal. Let the mapping D : S → S be
de�ned by

D(j, 0) =

(
0,

1

12
j

)
(57)

D(0, j) =

(
1

18
j, 0

)
.(58)

De�ne ϕ : intP ∪ {0} → intP ∪ {0} and ψ : P → P by

ψ(ξ) = (ξ1, ξ2) if ξ ∈ P(59)

ϕ(ξ) =
1

2
(ξ1, ξ2) if ξ ∈ intP ∪ {0}.(60)

Then ψ and ϕ satisfy all of properties mentioned in Theorem 2.2.
Without lose of generality, we assume that for all s, t, w ∈ S,

(61) d(s, t, w) = ρ(s, t)

and

(62) d(Ds,Dt, w) = ρ(Ds,Dt)
Now, we will discuss the following four cases.
Case 1. For s, t ∈ A and for all w ∈ S. Then

ψ
(
d(Ds,Dt, w)

)
= ψ

(
ρ(Ds,Dt)

)
= ψ

(
ρ

(
(0,

1

12
s), (0,

1

12
t)

))
=

(
1

12
|s− t|, 1

16
|s− t|

)
4

((
5

4
− 5

8

)
|s− t|,

(
1− 1

2

)
|s− t|

)
=

(
5

4
|s− t|, |s− t|

)
− 1

2

(
5

4
|s− t|, |s− t|

)
= ψ

(
ρ(s, t)

)
− ϕ

(
ρ(s, t)

)
= ψ

(
d(s, t, w)

)
− ϕ

(
d(s, t, w)

)
.

Case 2. For s, t ∈ B and for all w ∈ S. Then

ψ
(
d(Ds,Dt, w)

)
= ψ

(
ρ(Ds,Dt)

)
= ψ

(
ρ

(
(
1

18
s, 0), (

1

18
t, 0)

))
=

(
5

72
|s− t|, 1

18
|s− t|

)
4

((
1− 1

2

)
|s− t|,

(
3

4
− 3

8

)
|s− t|

)
=

(
|s− t|, 3

4
|s− t|

)
− 1

2

(
|s− t|, 3

4
|s− t|

)
= ψ

(
ρ(s, t)

)
− ϕ

(
ρ(s, t)

)
= ψ

(
d(s, t, w)

)
− ϕ

(
d(s, t, w)

)
.
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Case 3. For s ∈ A, t ∈ B and for all w ∈ S. Then

ψ
(
d(Ds,Dt, w)

)
= ψ

(
ρ(Ds,Dt)

)
= ψ

(
ρ

(
(0,

1

12
s), (

1

18
t, 0)

))
=

(
1

12
s+

5

72
t,

1

16
s+

1

18
t

)
4

(
5

8
s+

1

2
t,
1

2
s+

3

8
t

)
=

(
5

4
s+ t, s+

3

4
t

)
− 1

2

(
5

4
s+ t, s+

3

4
t

)
= ψ

(
ρ(s, t)

)
− ϕ

(
ρ(s, t)

)
= ψ

(
d(s, t, w)

)
− ϕ

(
d(s, t, w)

)
.

Case 4. For s ∈ B, t ∈ A and for all w ∈ S. Then

ψ
(
d(Ds,Dt, w)

)
= ψ

(
ρ(Ds,Dt)

)
= ψ

(
ρ

(
(
1

18
s, 0), (0,

1

12
t)

))
= ψ

(
ρ

(
(0,

1

12
t), (

1

18
s, 0)

))
=

(
1

12
t+

5

72
s,

1

16
t+

1

18
s

)
4

(
5

8
t+

1

2
s,

1

2
t+

3

8
s

)
=

(
5

4
t+ s, t+

3

4
s

)
− 1

2

(
5

4
t+ s, t+

3

4
s

)
= ψ

(
ρ(t, s)

)
− ϕ

(
ρ(t, s)

)
= ψ

(
ρ(s, t)

)
− ϕ

(
ρ(s, t)

)
= ψ

(
d(s, t, w)

)
− ϕ

(
d(s, t, w)

)
.

Hence, the conditions of Theorem 2.2 are satis�ed.
Here, it is seen that (0, 0) is the unique �xed point of the mapping D.

3. Conclusion

Nowadays, the researchers in the subject area are working to produce more
e�ective and generalized �xed point results. In this work we have generalized
many of the results from metric space and cone metric space to the cone 2-
metric space settings. Speci�cally, the work in [6] and [12] has been generalized
to the context of cone 2-metric space. Also, an example is given to strengthen
the main result.
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