A REMARK ON WEAK MODULE-AMENABILITY IN BANACH ALGEBRAS

Alireza Kamel Mirmostafaee and Omid Pourbahri Rahpeyma*

Abstract

We define a new concept of module amenability which is compatible with original definition of amenability. For a module dual algebra \mathcal{A}, we will show that if every module derivation $D: \mathcal{A}^{* *} \rightarrow J_{\mathcal{A}^{* *}}{ }^{\perp}$ is inner then \mathcal{A} is weak module amenable. Moreover, we will prove that under certain conditions, weak module amenability of $\mathcal{A}^{* *}$ implies weak module amenability of \mathcal{A}.

1. Introduction

Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A}-bimodule. A derivation $D: \mathcal{A} \rightarrow X$ is a bounded linear operator which satisfies the following,

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in \mathcal{A}) .
$$

A derivation $D: \mathcal{A} \rightarrow X$ is called inner if there is some $x \in X$ such that

$$
D(a)=a \cdot x-x \cdot a \quad(a \in \mathcal{A}) .
$$

Following B. E. Johnson [11], a Banach algebra \mathcal{A} is said to be amenable if every derivation from \mathcal{A} into a dual Banach \mathcal{A}-bimodule is inner.

A Banach algebra \mathcal{A} is called weakly amenable [3] if every derivation D : $\mathcal{A} \rightarrow \mathcal{A}^{*}$ is inner. F. Gourdeau in [10] has shown that the amenability of $\mathcal{A}^{* *}$ implies the amenability of \mathcal{A}. However, for weak amenability this result is not proved yet.
Problem. Let $\mathcal{A}^{* *}$ be a weakly amenable Banach algebra, can we conclude that \mathcal{A} is also weakly amenable?

The above problem has been solved in certain cases. For example, in each of the following cases the above problem has a positive answer.
(1) \mathcal{A} is a dual Banach algebra $[4,8]$.
(2) \mathcal{A} is a left ideal of $\mathcal{A}^{* *}$ [9].
(3) \mathcal{A} is a right ideal of $\mathcal{A}^{* *}$ with $\mathcal{A}^{* *} \square \mathcal{A}=\mathcal{A}^{* *}[7]$.

Received July 28, 2020. Revised March 22,2021. Accepted March 22, 2021.
2020 Mathematics Subject Classification. 43A07, 46H25.
Key words and phrases. Amenability, module amenability.
*Corresponding author
(4) \mathcal{A} is an Arens regular Banach algebra such that each continuous derivation from \mathcal{A} to \mathcal{A}^{*} is weakly compact.
The concept of module amenability for the class of Banach algebras that are modules over another Banach algebra was introduced in [1].

In Section 2, we will define the concept of module dual algebra. We will show that weak module amenability of $\mathcal{A}^{* *}$ implies weak module amenability of \mathcal{A} if the Banach algebra \mathcal{A} is a module dual algebra. This result can be considered as an extension of [8, Theorem 2.2]. In [2], the authors proved that if \mathcal{A} is a Banach \mathfrak{A}-bimodule with left trivial action and $\frac{\mathcal{A}}{J}$ is a dual algebra then weak module amenability of $\mathcal{A}^{* *}$ implies weak module amenability of \mathcal{A}, where J is the closed ideal of \mathcal{A} generated by $\{(\alpha . a) b-a(b . \alpha): a, b \in \mathcal{A}, \alpha \in \mathfrak{A}\}$. We will show that if \mathcal{A} is a module dual algebra, then we can omit the assumption of left triviality action of \mathcal{A} in the above result.

For a Banach algebra \mathcal{A} satisfying $J_{\mathcal{A}}{ }^{\perp \perp} \subseteq \mathcal{A} \quad$ and $\quad \mathcal{A}^{* *} \cdot \frac{\mathcal{A}}{J_{\mathcal{A}} \perp \perp} \subseteq \frac{\mathcal{A}}{J_{\mathcal{A}} \perp \perp}$, we prove that weak module amenability $\mathcal{A}^{* *}$ implies weak module amenability of \mathcal{A}. This result can be considered as an extension of [9, Theorem 2.3].

2. Main results

Let \mathcal{A} and \mathfrak{A} be Banach algebras and let \mathcal{A} be a Banach \mathfrak{A}-bimodule such that

$$
\alpha \cdot(a b)=(\alpha \cdot a) \cdot b \quad(a b) \cdot \alpha=a(b \cdot \alpha) \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}) .
$$

If X is both a Banach \mathcal{A}-bimodule and a Banach \mathfrak{A}-bimodule such that for all $a \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}$

$$
\begin{equation*}
\alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x \quad(a \cdot x) \cdot \alpha=a \cdot(x \cdot \alpha) x \cdot(a \cdot \alpha)=(x \cdot a) \cdot \alpha \quad x \cdot(\alpha \cdot a)=(x \cdot \alpha) \cdot a, \tag{1}
\end{equation*}
$$

then X is called an $\mathcal{A}-\mathfrak{A}$-module. If moreover,

$$
\alpha . x=x . \alpha \quad(\alpha \in \mathfrak{A}, x \in X),
$$

then X is called a commutative $\mathcal{A}-\mathfrak{A}$-module.

If X is a \mathcal{A} - \mathfrak{A}-module then so is X^{*}, with the following actions:

$$
\begin{aligned}
& \langle\alpha \cdot f, x\rangle=\langle f, x . \alpha\rangle \\
& \langle a . f, x\rangle=\langle f, x \cdot a\rangle
\end{aligned} \quad\langle f . \alpha, x\rangle=\langle f, \alpha \cdot x\rangle=\langle f, a \cdot x\rangle \quad\left(a \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}, f \in X^{*}\right) .
$$

Let X and Y be \mathcal{A} - \mathfrak{A}-modules and let $\phi: X \rightarrow Y$ be a linear map which satisfies the following conditions:

$$
\begin{array}{ll}
\phi(\alpha \cdot x)=\alpha \cdot \phi(x) & \phi(x . \alpha)=\phi(x) \cdot \alpha \\
\phi(a . x)=a \cdot \phi(x) & \phi(x \cdot a)=\phi(x) \cdot a
\end{array} \quad(a \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}) .
$$

Then ϕ is called an \mathcal{A} - \mathfrak{A}-module bi-homomorphism. Let X be a commutative \mathcal{A} - \mathfrak{A}-module, then the projective tensor product $\mathcal{A} \hat{\otimes} X$ is also an \mathcal{A} - \mathfrak{A}-module with the following actions:

$$
\begin{array}{ll}
a \cdot(b \otimes x)=(a b) \otimes x & (b \otimes x) \cdot a=b \otimes(x \cdot a) \\
\alpha \cdot(b \otimes x)=(\alpha \cdot b) \otimes x & (b \otimes x) \cdot \alpha=b \otimes(x \cdot \alpha)
\end{array} \quad(a, b \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}) .
$$

Now, let $\pi: \mathcal{A} \hat{\otimes} X \rightarrow X$ be defined by

$$
\pi(a \otimes x)=a \cdot x \quad(a \in \mathcal{A}, x \in X)
$$

It follows from the definition that π is an $\mathcal{A}-\mathfrak{A}$-module bi-homomorphism.
Let I_{X} be the closed \mathcal{A} - \mathfrak{A}-submodule of the projective tensor product $A \hat{\otimes} X$ generated by

$$
\{(a . \alpha) \otimes x-a \otimes(\alpha . x): a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X\} .
$$

Let J_{X} be the closed submodule of X generated by $\pi\left(I_{X}\right)$. That is

$$
J_{X}=\overline{\left\langle\pi\left(I_{X}\right)\right\rangle}
$$

In special case, when $X=\mathcal{A}, J_{\mathcal{A}}$ is the closed ideal generated by $\{(a . \alpha) b-$ $a(\alpha . b): a, b \in \mathcal{A}, \alpha \in \mathfrak{A}\}$ and the quotient Banach algebra $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ is also an $\mathcal{A}-\mathfrak{A}-$ module.

Remark 2.1. A discrete semigroup S is called inverse semigroup if for each $s \in S$ there is a unique element $s^{*} \in S$ such that $s^{*} s s^{*}=s^{*}$ and $s s^{*} s=s$. An element $e \in S$ is called idempotent if $e=e^{*}=e^{2}$. The set of idempotent of S is denote by E_{S}. It is easy to see that E_{S} is a commutative subsemigroup of S [10, Theorem V.1.2] with the natural order on E_{S}, defined by

$$
e \leq f \quad \Longleftrightarrow \quad e f=e \quad\left(e, f \in E_{S}\right)
$$

In particular $\ell^{1}\left(E_{S}\right)$ could be regarded as a subalgebra of $\ell^{1}(S)$ [10]. We also consider right and left actions (which doesn't has left trivial action) of $\ell^{1}\left(E_{S}\right)$ on $\ell^{1}(S)$ by

$$
\delta_{e} \cdot \delta_{s}=\delta_{s^{*} s}, \quad \delta_{s} * \delta_{e}=\delta_{s e} \quad\left(e \in E_{S}, s \in S\right)
$$

This actions make, $\ell^{1}(S)$ become a Banach $\ell^{1}\left(E_{S}\right)$-module. Therefore $J_{\ell^{1}(S)}$ is the closed submodule of $\ell^{1}(S)$ generated by

$$
\left\{\delta_{s e t}-\delta_{s t^{*} t}: s, t \in S, e \in E_{S}\right\}
$$

Let \mathcal{A} and \mathfrak{A} be Banach algebras and X be a Banach \mathcal{A} - \mathfrak{A}-module according to the conditions (1), a bounded linear map $D: \mathcal{A} \rightarrow X$ is called a module derivation if D satisfies the following:

$$
\begin{aligned}
D(a b) & =D(a) \cdot b+a \cdot D(b) \\
D(\alpha \cdot a) & =\alpha \cdot D(a), \quad D(a \cdot \alpha)=D(a) \cdot \alpha \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}) .
\end{aligned}
$$

Lemma 2.2. Let X be a commutative \mathcal{A} - \mathfrak{A}-module and let $D: \mathcal{A} \rightarrow X^{*}$ be a module derivation. Then $D(\mathcal{A}) \subseteq J_{X}{ }^{\perp}$.

Proof. Let $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $x \in X$, then $(a . \alpha) x-a(\alpha . x) \in J_{X}$. Then

$$
\langle D(b),(a \cdot \alpha) x-a(\alpha \cdot x)\rangle=\langle D(b) \cdot(a \cdot \alpha)-(D(b) \cdot a) \cdot \alpha, x\rangle=0 .
$$

Definition 2.3. A Banach \mathfrak{A}-bimodule \mathcal{A} is called weak module amenable (as an \mathfrak{A}-bimodule), if ${J_{\mathcal{A}}}^{\perp}$ is a commutative \mathfrak{A}-module and each linear module derivation $D: \mathcal{A} \rightarrow J_{\mathcal{A}}{ }^{\perp}$ is inner.

Corollary 2.4. \mathcal{A} is weak module amenable if $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ is weak amenable.
Proof. Let $D: \mathcal{A} \rightarrow J_{\mathcal{A}}{ }^{\perp}$ is a module derivation, then $\tilde{D}: \frac{\mathcal{A}}{J_{\mathcal{A}}} \rightarrow J_{\mathcal{A}}{ }^{\perp}$ by $\tilde{D}\left(a+J_{\mathcal{A}}\right)=D(a)$ is deviation so it is inner. Therefore there exist $f \in J_{\mathcal{A}}{ }^{\perp}$ such that

$$
\tilde{D}\left(a+J_{\mathcal{A}}\right)=\left(a+J_{\mathcal{A}}\right) \cdot f-f \cdot\left(a+J_{\mathcal{A}}\right)
$$

therefore $D(a)=a \cdot f-f \cdot a$. i.e. D is inner.
It is known that

$$
\begin{equation*}
\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{* *} \simeq \frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}^{\perp \perp}} \simeq\left(J_{\mathcal{A}}{ }^{\perp}\right)^{*} \tag{2}
\end{equation*}
$$

for every Banach algebra \mathcal{A} (see e.g. [5, Theorem 10.2]).
Remark 2.5. Since $\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*} \simeq J_{\mathcal{A}}{ }^{\perp}$, we have

$$
\begin{equation*}
\left\langle\tilde{f}, a+J_{\mathcal{A}}\right\rangle=\langle f, a\rangle \quad(a \in A) \tag{3}
\end{equation*}
$$

where $f \in J_{\mathcal{A}}{ }^{\perp}$ is the corresponding element to $\tilde{f} \in\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}$. Also since $\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{* *} \simeq$ $\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}{ }^{\perp \perp}}$, we have

$$
\begin{equation*}
\langle\tilde{F}, \tilde{f}\rangle=\langle F, f\rangle \quad\left(\tilde{f} \simeq f \in J_{\mathcal{A}}^{\perp}\right) \tag{4}
\end{equation*}
$$

where $F+J_{\mathcal{A}}{ }^{\perp \perp} \in \frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}{ }^{\perp \perp}}$ is the corresponding element to $\tilde{F} \in\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{* *}$.
Note that $\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}}\right)^{*}$ is a Banach \mathcal{A}-bimodule, where the actions of \mathcal{A} on $\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}}\right)^{*}$ are defined by
$\left\langle\tilde{f} \cdot a, b+J_{\mathcal{A}}\right\rangle=\left\langle\tilde{f}, a b+J_{\mathcal{A}}\right\rangle,\left\langle a \cdot \tilde{f}, b+J_{\mathcal{A}}\right\rangle=\left\langle\tilde{f}, b a+J_{\mathcal{A}}\right\rangle \quad\left(a, b \in \mathcal{A}, \tilde{f} \in\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}\right)$.
Definition 2.6. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule. We say that \mathcal{A} is a module dual algebra if there exists a closed \mathcal{A} - \mathcal{A}-module X of $J_{\mathcal{A}}{ }^{\perp}$ such that $J_{X}{ }^{\perp}=\mathcal{A}$. In this case, X is called a pre-module dual of \mathcal{A}.

Lemma 2.7. Let \mathcal{A} be a module dual algebra and let X be pre-module dual of \mathcal{A}. If $i: \frac{X}{J_{X}} \rightarrow\left(\frac{X}{J_{X}}\right)^{* *}$ is the canonical embedding, then i^{*} is an \mathcal{A} - \mathfrak{A}-module bi homomorphism. Moreover i^{*} is a $\left(\mathcal{A}^{* *}, \square\right)$-homomorphism.

Proof. For each $a \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $f+J_{X} \in \frac{X}{J_{X}}$, we have

$$
\begin{aligned}
i\left(a \cdot\left(f+J_{X}\right)\right) & =i\left(a \cdot f+J_{X}\right)=\left(a \cdot \widehat{f+J_{X}}\right)=\widehat{(a \cdot f)}+J_{X} \\
& =a \cdot \hat{f}+J_{X}=a \cdot\left(\hat{f}+J_{X}\right)=a \cdot\left(\widehat{f+J_{X}}\right)=a \cdot i\left(f+J_{X}\right) .
\end{aligned}
$$

Hence

$$
i\left(a .\left(f+J_{X}\right)\right)=a . i\left(f+J_{X}\right) \quad(a \in \mathcal{A}, f \in X)
$$

By applying a similar argument, we can prove that

$$
\left.i\left(\alpha \cdot\left(f+J_{X}\right)\right)=\alpha \cdot i\left(f+J_{X}\right)\right) \quad(\alpha \in \mathfrak{A})
$$

Therefore i is an \mathcal{A} - \mathfrak{A}-module bi homomorphism. So that i^{*} is also an \mathcal{A} - \mathfrak{A}-module bi homomorphism. Moreover, for each $f+J_{X} \in \frac{X}{J_{X}}$ and $a \in \mathcal{A}$,

$$
\left\langle i^{*}(\hat{a}), f+J_{X}\right\rangle=\left\langle\hat{a}, i\left(f+J_{X}\right)\right\rangle=\left\langle\hat{a}, f \hat{+} J_{X}\right\rangle=\left\langle f \hat{+J_{X}}, a\right\rangle=\left\langle a, f+J_{X}\right\rangle .
$$

Hence

$$
\begin{equation*}
i^{*}(\hat{a})=a \tag{6}
\end{equation*}
$$

In order to show that i^{*} is a $\left(\mathcal{A}^{* *}, \square\right)$-homomorphism, we use Goldstine's theorem to obtain bounded nets $\left\{a_{\alpha}\right\}$ and $\left\{b_{\beta}\right\}$ in \mathcal{A} corresponding to $F, G \in$ $\mathcal{A}^{* *}$ such that $w^{*}-\lim _{\alpha} a_{\alpha}=F$ and $w^{*}-\lim _{\beta} b_{\beta}=G$. Then

$$
\begin{aligned}
i^{*}(F \square G) & =i^{*}\left(w^{*}-\lim _{\alpha} \lim _{\beta}\left(\hat{a_{\alpha}} b_{\beta}\right)\right) \\
& =w^{*}-\lim _{\alpha} \lim _{\beta} i^{*}\left(a_{\alpha} b_{\beta}\right) \quad\left(i^{*} \text { is } w^{*}-\text { continuous }\right) \\
& =w^{*}-\lim _{\alpha} \lim _{\beta}\left(a_{\alpha} b_{\beta}\right) \quad \text { by }(6) \\
& =\left(w^{*}-\lim _{\alpha} a_{\alpha}\right)\left(w^{*}-\lim _{\beta} b_{\beta}\right) \\
& =\left(w^{*}-\lim _{\alpha} i^{*}\left(\hat{a}_{\alpha}\right)\right)\left(w^{*}-\lim _{\beta} i^{*}\left(\hat{b}_{\beta}\right)\right)=i^{*}(F) i^{*}(G) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
i^{*}(F \square G)=i^{*}(F) i^{*}(G) \tag{7}
\end{equation*}
$$

Theorem 2.8. Let \mathcal{A} be a module dual algebra. Then the weak module amenability of $\mathcal{A}^{* *}$ implies weak module amenability of \mathcal{A}.

Proof. Let X be a closed submodule of $J_{\mathcal{A}}{ }^{\perp}$ such that $J_{X}{ }^{\perp}=\mathcal{A}$, and let i be the canonical embedding from $\frac{X}{J_{X}}$ to $\frac{X}{J_{X}}{ }^{* *}$.

First we show that $\left.i^{* *}\right|_{J_{\mathcal{A}}}(f) \in J_{\mathcal{A}^{* *}}{ }^{\perp}$ for each $f \in J_{\mathcal{A}}{ }^{\perp}$. To do this, let $F=(a . \alpha) \cdot G-a \cdot(\alpha \cdot G)$ be a generating element of $J_{\mathcal{A}^{* *}}$, where $G \in \mathcal{A}^{* *}, a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. Then

$$
\begin{aligned}
\left\langle i^{*}(F), x+J_{X}\right\rangle & =\left\langle i^{*}((a \cdot \alpha) \cdot G-a \cdot(\alpha \cdot G)), x+J_{X}\right\rangle \\
& =\left\langle(a \cdot \alpha) i^{*}(G)-a \cdot\left(\alpha \cdot i^{*}(G)\right), x+J_{X}\right\rangle,\left(i^{*} \text { is homomorphism }\right) \\
& =\left\langle i^{*}(G),\left(x+J_{X}\right)(a \cdot \alpha)\right\rangle-\left\langle i^{*}(G),\left(\left(x+J_{X}\right) \cdot a\right) \cdot \alpha\right\rangle \\
& \left.=\left\langle i^{*}(G), x \cdot(a \cdot \alpha)+J_{X}\right\rangle-\left\langle i^{*}(G),(x \cdot a) \cdot \alpha+J_{X}\right)\right\rangle \\
& =\left\langle i^{*}(G),(x \cdot(a \cdot \alpha)-(x \cdot a) \cdot \alpha)+J_{X}\right\rangle=0,
\end{aligned}
$$

since $x .(a \cdot \alpha)=(x \cdot a) . \alpha$. Hence $i^{*}(F) \in\left(\frac{X}{J_{X}}\right)^{\perp}$ whenever F belongs to a generating element of $J_{\mathcal{A}^{* *}}$. It follows from continuity and linearity of i^{*} that $i^{*}(F) \in\left(\frac{X}{J_{X}}\right)^{\perp}$ for each $F \in J_{\mathcal{A}^{* *}}$. Since $i^{*}(F) \in\left(\frac{X}{J_{X}}\right)^{*}$, we have $i^{*}(F)=0$. Let $f \in J_{\mathcal{A}}{ }^{\perp}$ and $F \in J_{\mathcal{A}^{* *}}$, then

$$
\left\langle i^{* *}(f), F\right\rangle=\left\langle f, i^{*}(F)\right\rangle=0 .
$$

It follows that $\left.i^{* *}\right|_{J_{\mathcal{A}}}{ }^{\perp} \in J_{\mathcal{A}^{* *}}{ }^{\perp}$. Let $D: \mathcal{A} \rightarrow J_{\mathcal{A}}{ }^{\perp}$ be a module derivation. Define

$$
\bar{D}=i^{* *} \circ D \circ i^{*}: \mathcal{A}^{* *} \rightarrow J_{\mathcal{A}^{* *}} \perp \simeq\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}^{* *}}}\right)^{*}
$$

We will show that \bar{D} is a module derivation. It is clear that \bar{D} is a bounded linear map. For each $F, G, E \in \mathcal{A}^{* *}$, by [8, Theorem 2.2]

$$
\langle\bar{D}(F \square G), E\rangle=\langle\bar{D}(F) \cdot G+F \cdot \bar{D}(G), E\rangle .
$$

Hence $\bar{D}(F \square G)=\bar{D}(F) \cdot G+F \cdot \bar{D}(G)$. Moreover, \bar{D} is \mathfrak{A}-module derivation, since D and i are \mathfrak{A}-homomorphism. Thus $\bar{D}: \mathcal{A}^{* *} \rightarrow J_{\mathcal{A}^{* *}} \perp$ is a module derivation. Since $\mathcal{A}^{* *}$ is weakly module amenable, there exists some $P \in J_{\mathcal{A}^{* *}}{ }^{\perp}$ such that

$$
\bar{D}(F)=F . P-P . F \quad\left(F \in \mathcal{A}^{* *}\right) .
$$

Define $\phi: \frac{\mathcal{A}}{J_{\mathcal{A}}} \rightarrow \frac{\mathcal{A}^{* *}}{J_{\mathcal{A}^{* *}}}$ by $\phi\left(a+J_{\mathcal{A}}\right)=\hat{a}+J_{\mathcal{A}^{* *}}(a \in \mathcal{A})$. We will show that ϕ is well defined. Let $a_{1}, a_{2} \in \mathcal{A}$ and $a_{1}+J_{\mathcal{A}}=a_{2}+J_{\mathcal{A}}$. Therefore, we can find $a_{i, j}, b_{i, j}, c_{i, j}, d_{i, j} \in \mathcal{A}$ and $\alpha_{i, j} \in \mathfrak{A}$ such that

$$
a_{1}-a_{2}=\lim _{j} \sum_{i=1}^{n}\left(c_{i, j}\left(\left(a_{i, j} \cdot \alpha_{i, j}\right) b_{i, j}-a_{i, j}\left(\alpha_{i, j} \cdot b_{i, j}\right)\right) d_{i, j}\right) .
$$

Hence

$$
\begin{aligned}
\hat{a_{1}}-\hat{a_{2}}=\left(\widehat{a_{1}-a_{2}}\right) & =\lim _{j} \sum_{i=1}^{n}\left(c_{i, j}\left(\left(\left(a_{i, j} \cdot \alpha_{i, j}\right) \overrightarrow{b_{i, j}}-a_{i, j}\left(\alpha_{i, j} \cdot b_{i, j}\right)\right) d_{i, j}\right)\right. \\
& =\lim _{j} \sum_{i=1}^{n}\left(\hat{c_{i, j}}\left(\left(\widehat{a_{i, j} \cdot \alpha_{i, j}}\right) \hat{b_{i, j}}-\hat{a_{i, j}}\left(\widehat{\alpha_{i, j} \cdot b_{i, j}}\right)\right) \hat{d}_{i, j}\right) \\
& =\lim _{j} \sum_{i=1}^{n}\left(\hat{c_{i, j}}\left(\left(\hat{a_{i, j}} \cdot \alpha_{i, j}\right) \hat{b_{i, j}}-\hat{a_{i, j}}\left(\alpha_{i, j} \cdot \hat{b_{i, j}}\right)\right) \hat{d}_{i, j}\right) .
\end{aligned}
$$

Since $\left(\hat{c}_{i, j}\left(\left(a \hat{a_{i, j}} . \alpha_{i, j}\right) \hat{b_{i, j}}-\hat{a_{i, j}}\left(\alpha_{i, j} \cdot \hat{b_{i, j}}\right)\right) \hat{d}_{i, j}\right) \in J_{\mathcal{A}^{* *}}$ and $J_{\mathcal{A}^{* *}}$ is a closed ideal, we have $\hat{a_{1}}-\hat{a_{2}} \in J_{\mathcal{A}^{* *}}$. Hence

$$
\phi\left(a_{1}+J_{\mathcal{A}}\right)=\phi\left(a_{2}+J_{\mathcal{A}}\right) .
$$

Now, we will show that D is inner. Let $a, b \in \mathcal{A}$, by [8, Theorem2.2]

$$
\langle D(a), b\rangle=\langle P, \hat{b a}\rangle-\langle P, \hat{a b}\rangle .
$$

It follows from (3) that $P \in J_{\mathcal{A}^{* *}}{ }^{\perp}$. Hence there exists some $\tilde{F} \in\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}^{* *}}}\right)^{*}$ such that

$$
\langle P, G\rangle=\left\langle\tilde{F}, G+J_{\mathcal{A}^{* *}}\right\rangle \quad\left(G \in \mathcal{A}^{* *}\right)
$$

Therefore for each $a, b \in \mathcal{A}$, we have

$$
\begin{aligned}
\langle D(a), b\rangle & =\left\langle\tilde{F}, \hat{b a}+J_{\mathcal{A}^{* *}}\right\rangle-\left\langle\tilde{F}, \hat{a b}+J_{\mathcal{A}^{* *}}\right\rangle \\
& =\left\langle\tilde{F}, \phi\left(b a+J_{\mathcal{A}}\right)\right\rangle-\left\langle\tilde{F}, \phi\left(a b+J_{\mathcal{A}}\right)\right\rangle \\
& =\left\langle\phi^{*}(\tilde{F}), b a+J_{\mathcal{A}}\right\rangle-\left\langle\phi^{*}(\tilde{F}), a b+J_{\mathcal{A}}\right\rangle \\
& =\left\langle\phi^{*}(\tilde{F}), b \cdot\left(a+J_{\mathcal{A}}\right)\right\rangle-\left\langle\phi^{*}(\tilde{F}),\left(a+J_{\mathcal{A}}\right) \cdot b\right\rangle \\
& =\left\langle\left(a+J_{\mathcal{A}}\right) \cdot \phi^{*}(\tilde{F})-\phi^{*}(\tilde{F}) \cdot\left(a+J_{\mathcal{A}}\right), b\right\rangle \\
& =\left\langle a \cdot \phi^{*}(\tilde{F})-\phi^{*}(\tilde{F}) \cdot a, b\right\rangle \quad \text { by }(3)
\end{aligned}
$$

Corollary 2.9. [8, Theorem 2.2] Let Banach algebra \mathcal{A} be a dual algebra, then weakly amenability $\mathcal{A}^{* *}$ implies that of \mathcal{A}.

Proof. Take $\mathfrak{A}=\mathbb{C}$ in Theorem 2.8.
Remark 2.10. In [2], it is shown that if \mathcal{A} is a Banach \mathfrak{A}-bimodule with left trivial action and $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ is a dual algebra, then weak module amenability of $\mathcal{A}^{* *}$ implies that of \mathcal{A}. According to Theorem 2.8 , when \mathcal{A} is a module dual algebra, the above conditions can be eliminated.

For a Banach algebra \mathcal{A}, let $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ be a Banach \mathcal{A}-bimodule whose left and right module actions are

$$
\pi_{1}: \mathcal{A} \times \frac{\mathcal{A}}{J_{\mathcal{A}}} \rightarrow \frac{\mathcal{A}}{J_{\mathcal{A}}}, \quad \pi_{1}\left(a, b+J_{\mathcal{A}}\right)=a b+J_{\mathcal{A}}
$$

and

$$
\pi_{2}: \frac{\mathcal{A}}{J_{\mathcal{A}}} \times \mathcal{A} \rightarrow \frac{\mathcal{A}}{J_{\mathcal{A}}}, \quad \pi_{2}\left(b+J_{\mathcal{A}}, a\right)=b a+J_{\mathcal{A}}
$$

for $a, b \in \mathcal{A}$. We denote $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ with the above operations by $\left(\pi_{1}, \frac{\mathcal{A}}{J_{\mathcal{A}}}, \pi_{2}\right)$. Then $\left(\pi_{2}^{r * r},\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}, \pi_{1}^{*}\right)$ is a Banach \mathcal{A}-bimodule [6], which is called the dual of $\left(\pi_{1}, \frac{\mathcal{A}}{J_{\mathcal{A}}}, \pi_{2}\right)$. Here $\pi_{2}^{r * r}: \mathcal{A} \times\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*} \rightarrow\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}$ and $\pi_{1}^{*}:\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*} \times \mathcal{A} \rightarrow\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}$ are given by

$$
\pi_{2}^{r * r}(a, f)=a . f, \quad \pi_{1}^{*}(f, a)=f . a \quad\left(a \in \mathcal{A}, f \in\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}\right)
$$

Since $\left(\pi_{2}^{r * r * * *},\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{* * *}, \pi_{1}^{* * * *}\right)$ is the second dual of $\left(\pi_{2}^{r * r},\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}, \pi_{1}^{*}\right)$ (as a Banach \mathcal{A}-module), $\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{* * *}$ is a $\mathcal{A}^{* *}$-bimodule.

Lemma 2.11. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule, X be a \mathcal{A} - \mathfrak{A}-module and $D: \mathcal{A} \rightarrow X$ be a module derivation, then $D^{* *}: \mathcal{A}^{* *} \rightarrow X^{* *}$ is a module derivation.

Proof. It is clear that the adjoint of a module homomorphism is also a module homomorphism.

Remark 2.12. [5, Theorem 10.2] Let \mathcal{A} be a Banach algebra, then

$$
\left(J_{\mathcal{A}}^{\perp}\right)^{* *} \cong\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{* * *} \cong\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}^{\perp \perp}}\right)^{*}
$$

Lemma 2.13. For a Banach algebra \mathcal{A}, we have

$$
\widehat{\left(\frac{\mathcal{A}}{J_{\mathcal{A}}}\right)^{*}} \cong \widehat{\left(J_{\mathcal{A}}{ }^{\perp}\right)} \subseteq\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}^{* *}}}\right)^{*} \cong J_{\mathcal{A}^{* *}}{ }^{\perp}
$$

Proof. If $f \in J_{\mathcal{A}}{ }^{\perp}$, then $f \mid J_{\mathcal{A}}=0$. We will show that $\hat{f} \in J_{\mathcal{A}^{* *}}{ }^{\perp}$. Take some $a^{* *} \in \mathcal{A}^{* *}$ and let $\left\{a_{i}\right\}$, be a bounded net in \mathcal{A} such that $w^{*}-\lim _{i} a_{i}=a^{* *}$ and let $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. Then

$$
\begin{aligned}
\left\langle\hat{f},(a \cdot \alpha) \cdot a^{* *}-a \cdot\left(\alpha \cdot a^{* *}\right)\right\rangle & =\left\langle(a \cdot \alpha) \cdot a^{* *}-a \cdot\left(\alpha \cdot a^{* *}\right), f\right\rangle \\
& =\lim _{i}\left\langle(a \cdot \alpha) \hat{a_{i}}-a \cdot\left(\alpha \cdot \hat{a_{i}}\right), f\right\rangle \\
& =\lim _{i}\left\langle(a \cdot \alpha) \widehat{a_{i}-a} \cdot\left(\alpha \cdot a_{i}\right), f\right\rangle \\
& =\lim _{i}\left\langle f,(a \cdot \alpha) a_{i}-a \cdot\left(\alpha \cdot a_{i}\right)\right\rangle=0 .
\end{aligned}
$$

Since \hat{f} is linear and continuous, $\hat{f} \in J_{\mathcal{A}^{* *}}{ }^{\perp}$.

Theorem 2.14. Let \mathcal{A} be a Banach algebra and a Banach \mathfrak{A}-bimodule Banach algebra. Suppose that for every module derivation $D: \mathcal{A} \rightarrow J_{\mathcal{A}}{ }^{\perp}$

$$
\begin{equation*}
J_{\mathcal{A}}^{\perp \perp} \subseteq \mathcal{A} \quad \text { and } \quad D^{* *}\left(\mathcal{A}^{* *}\right) \subseteq\left(\frac{\mathcal{A}}{J_{\mathcal{A}}^{\perp \perp}}\right)^{*} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{\mathcal{A}}{ }^{\perp \perp} \subseteq \mathcal{A} \quad \text { and } \quad \mathcal{A}^{* *} \cdot \frac{\mathcal{A}}{J_{\mathcal{A}}^{\perp \perp}} \subseteq \frac{\mathcal{A}}{J_{\mathcal{A}}{ }^{\perp \perp}} \tag{9}
\end{equation*}
$$

Then weak module amenability of $\mathcal{A}^{* *}$ implies weak module amenability of \mathcal{A}.
Proof. Let $\phi: \frac{\mathcal{A}}{J_{\mathcal{A}}} \rightarrow \frac{\mathcal{A}^{* *}}{J_{\mathcal{A}}{ }^{\perp \perp}}$ be defined by $\phi\left(a+J_{\mathcal{A}}\right)=\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}$ for each $a \in \mathcal{A}$. By applying the same argument that was used in the proof of Theorem 2.8, one can see that ϕ is well-defined.

Let $D: \mathcal{A} \rightarrow J_{\mathcal{A}}{ }^{\perp}$ be a module derivation. By Remark 2.12 and Lemma 2.13, we may assume that $\phi^{*} \circ D^{* *}$ is a function from $\mathcal{A}^{* *}$ into $\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}} * *}\right)^{*}$. Hence, we have to show that is a module derivation. By Lemma 2.11, $D^{* *}: \mathcal{A}^{* *} \rightarrow$ $\left(J_{\mathcal{A}}{ }^{\perp}\right)^{* *}$ is a module derivation i.e.
$D^{* *}\left(a^{* *} \square b^{* *}\right)=\pi_{1}^{* * * *}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)+\pi_{2}^{r * r * * *}\left(a^{* *}, D^{* *}\left(b^{* *}\right)\right) \quad\left(a^{* *}, b^{* *} \in \mathcal{A}\right)$.
Hence for each $a^{* *}, b^{* *} \in \mathcal{A}$,
(10)

$$
\phi^{*} \circ D^{* *}\left(a^{* *} \square b^{* *}\right)=\phi^{*}\left(\pi_{1}^{* * * *}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)\right)+\phi^{*}\left(\pi_{2}^{r * r * * *}\left(a^{* *}, D^{* *}\left(b^{* *}\right)\right)\right)
$$

Let $\left\{a_{i}\right\},\left\{b_{j}\right\}$ be bounded nets in \mathcal{A} such that $w^{*}-\lim _{i} a_{i}=a^{* *}$ and $w^{*}-$ $\lim _{j} b_{j}=b^{* *}$. Then for each $a+J_{\mathcal{A}} \in \frac{\mathcal{A}}{J_{\mathcal{A}}}$, we have

$$
\begin{aligned}
\left\langle\phi^{*}\left(\pi_{2}^{r * r * * *}\left(a^{* *}, D^{* *}\left(b^{* *}\right)\right)\right), a+J_{\mathcal{A}}\right\rangle & =\left\langle\pi_{2}^{r * r * * *}\left(a^{* *}, D^{* *}\left(b^{* *}\right)\right), \phi\left(a+J_{\mathcal{A}}\right)\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle\pi_{2}^{r * r}\left(\hat{a}_{i}, D^{* *}\left(\hat{b}_{j}\right)\right),\left(\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}\right)\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle D^{* *}\left(\hat{b}_{j}\right), \pi_{2}\left(\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}, \hat{a}_{i}\right)\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle D^{* *}\left(\hat{b}_{j}\right), a \hat{a}_{i}+J_{\mathcal{A}}{ }^{\perp \perp}\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle D^{* *}\left(\hat{b}_{j}\right), \phi\left(a a_{i}+J_{\mathcal{A}}\right)\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle D^{* *}\left(\hat{b}_{j}\right), \phi\left(\pi_{2}\left(a+J_{\mathcal{A}}, a_{i}\right)\right)\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle\phi^{*}\left(D^{* *}\left(\hat{b}_{j}\right)\right), \pi_{2}^{r}\left(a_{i}, a+J_{A}\right)\right\rangle \\
& =\lim _{i} \lim _{j}\left\langle\pi_{2}^{r * r}\left(a_{i}, \phi^{*}\left(D^{* *}\left(\hat{b}_{j}\right)\right)\right), a+J_{\mathcal{A}}\right\rangle \\
& =\left\langle\pi_{2}^{r * r * * *}\left(a^{* *}, \phi^{*}\left(D^{* *}\left(b^{* *}\right)\right)\right), a+J_{\mathcal{A}}\right\rangle .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\phi^{*}\left(\pi_{2}^{r * r * * *}\left(a^{* *}, D^{* *}\left(b^{* *}\right)\right)\right)=\pi_{2}^{r * r * * *}\left(a^{* *}, \phi^{*}\left(D^{* *}\left(b^{* *}\right)\right)\right) . \tag{11}
\end{equation*}
$$

Also

$$
\begin{aligned}
\left\langle\phi^{*}\left(\pi_{1}^{* * * *}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)\right), a+J_{\mathcal{A}}\right\rangle & =\left\langle\pi_{1}^{* * * *}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right), \phi\left(a+J_{\mathcal{A}}\right)\right\rangle \\
& =\left\langle D^{* *}\left(a^{* *}\right), \pi_{1}^{* * *}\left(b^{* *}, \hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}\right\rangle .\right.
\end{aligned}
$$

If (9) holds $\pi_{1}^{* * *}\left(b^{* *}, \hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}\right)=\phi\left(\pi_{1}^{* * *}\left(b^{* *}, \hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}\right)\right)$ and if (8) holds $D^{* *}\left(a^{* *}\right)=\phi^{*}\left(D^{* *}\left(a^{* *}\right)\right)$. Therefore

$$
\begin{aligned}
\left\langle\phi^{*}\left(\pi_{1}^{* * * *}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)\right), a+J_{\mathcal{A}}\right\rangle & =\left\langle\phi^{*}\left(D^{* *}\left(a^{* *}\right)\right), \pi_{1}^{* * *}\left(b^{* *}, \hat{a}+J_{\mathcal{A}}^{\perp \perp}\right\rangle\right. \\
& =\left\langle\pi_{1}^{* * *} o \phi^{*}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right), \hat{a}+J_{\mathcal{A}}^{\perp \perp}\right\rangle
\end{aligned}
$$

Thus

$$
\begin{equation*}
\phi^{*}\left(\pi_{1}^{* * * *}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)\right)=\pi_{1}^{* * * *}\left(\phi^{*}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)\right) . \tag{12}
\end{equation*}
$$

Hence by (11) and (12)

$$
\phi^{*} \circ D^{* *}\left(a^{* *} \square b^{* *}\right)=\pi_{1}^{* * * *}\left(\phi^{*}\left(D^{* *}\left(a^{* *}\right), b^{* *}\right)\right)+\pi_{2}^{r * r * * *}\left(a^{* *}, \phi^{*}\left(D^{* *}\left(b^{* *}\right)\right)\right)
$$

and so $\phi^{*} \circ D^{* *}$ is a derivation. For each $\alpha \in \mathfrak{A}$ and $a^{* *} \in \mathcal{A}^{* *}$,

$$
\phi^{*} \circ D^{* *}\left(\alpha a^{* *}\right)=\alpha \phi^{*} \circ D^{* *}\left(a^{* *}\right)
$$

and

$$
\phi^{*} \circ D^{* *}\left(a^{* *} \alpha\right)=\phi^{*} \circ D^{* *}\left(a^{* *}\right) \alpha .
$$

Thus $\phi^{*} \circ D^{* *}: \mathcal{A}^{* *} \rightarrow\left(\frac{\mathcal{A}^{* *}}{J_{\mathcal{A}^{* *}}}\right)^{*}$ is a module derivation. As $\mathcal{A}^{* *}$ is weak module amenable, there is some $F \in\left(\frac{\mathcal{A}^{* *}}{J_{A^{* *}}}\right)^{*}$ such that $\phi^{*} \circ D^{*}=\delta_{F}$. Let $f=\phi^{*}(F) \in\left(\frac{\mathcal{A}^{* *}}{J_{A^{* *}}}\right)$ it follows that $D=\delta_{f}$; i.e D is inner. Therefore \mathcal{A} is weak module amenable.

Corollary 2.15. [9, Theorem 2.3] Let \mathcal{A} be a Banach algebra such that $\mathcal{A}^{* *}$ is weakly amenable, and suppose that \mathcal{A} is a left ideal in $\mathcal{A}^{* *}$. Then \mathcal{A} is weakly amenable.

Proof. Take $\mathfrak{A}=\mathbb{C}$ in Theorem 2.8.
Corollary 2.16. [6, Corollary 7.5] Let \mathcal{A} be a Banach algebra such that $\mathcal{A}^{* *}$ is weakly amenable, and suppose that every derivation $D: \mathcal{A} \rightarrow \mathcal{A}^{*}$ is weakly compact. Then \mathcal{A} is weakly amenable.

Proof. Take $\mathfrak{A}=\mathbb{C}$ in Theorem 2.8.

Acknowledgments

The authors express their sincere thanks to the referee for valuable comments. This article is taken from the second author's dissertation.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup fourm, 69, (2004), 302-312.
[2] M. Amini and A. Bodaghi, Module amenability and weak module amenability for second dual of Banach algebras, Cham. J. Math. 2 Number 1, (2010), $57-71$.
[3] W. G. Bade, P. C. Curtis Jr. and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. Lond. Math. Soc. 55. no 3, (1987), 359 - 377.
[4] S. Barootkoob and H. R. Ebrahimi Vishki, Lifting derivations and n-weak amenability of the second dual of a Banach algebra, Bull. Aust. Math. Soc. 83, (2011), 122 - 129.
[5] J. B. Conway, A course in functional Analysis, Speringer - Verlag, New York, (1985).
[6] H. G. Dales, A. Rodríguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. 64, (2001), 707 - 721.
[7] M. Eshaghi Gordji and M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math, 182 (3), (2007), 205 - 213.
[8] F. Ghahramani and J. Laali, Amenability and topological center of the second dual of Banach algebras, Bull. Austral. Soc.65, (2002), 191 - 197.
[9] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of the second conjugate Banach algebras, Proc. Amer. Math. Soc.124, (1996), 1489 - 1497.
[10] F. Gourdeau, Amenability and the second dual of a Banach algebra, Studia Math. 125, (1997), $75-81$.
[11] B. E. Johnson, Cohomology in Banach algebra, Memoirs Amer. Math. Soc. 127, (1972).

Alireza Kamel Mirmostafaee
Department of Pure Mathematics,
Ferdowsisi University of Mashhad, Iran.
Email: mirmostafaei@ferdowsi.um.ac.ir
Omid Pourbahri Rahpeyma
Department of Mathematics,
Chalous Branch,
Islamic Azad University, Chalous, Iran.
Email:omidpourbahri@yahoo.com

