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COUPLED FIXED POINT THEOREMS OF SOME

CONTRACTION MAPS OF INTEGRAL TYPE ON CONE

METRIC SPACES OVER BANACH ALGEBRAS

Hudson Akewe, Joshua Olilima∗, and Adesanmi Mogbademu

Abstract. In this paper, we prove some coupled fixed point theorems
satisfying some generalized contractive condition in a cone metric space

over a Banach algebra. We also applied the results obtained to show
coupled fixed point of some contractive mapping of integral type.

1. Introduction

Ever since S. Banach [13] introduced the well celebrated result commonly
referred to as Banach contraction principle in 1921, fixed point theory have
developed tremendously and have become an important field in mathematics.
The author [13], introduced the concept of fixed point as a useful tool in solv-
ing problems in mathematics, economics and engineering. For instance, Most
existence and uniqueness of solution of differential equations are shown using
the theory of fixed point, the reader can consult [10, 11, 12, 24, 26, 27] and
the references therein for further information; Afif et al. in [19] studied the
solution of the stationary nonlinear model arising in the theory of growing cell
population via fixed point theory; Shehu and Iyiola in [28] used the concept of
variational inequality problem which can be converted to a fixed point problem
to study the industrial electricity production model; very recently Okeke and
Abass [27], Okeke [26] introduced the Picard-Krasnoselskii and Picard-Ishikawa
hybrid iterative process respectively and showed that it converges to the solu-
tion of a delay differential equation; G. Viglialoro and J. Murcia in [33] believed
that fixed point approach can be used to solve the direct problem related to
the equilibrium analysis of a membrane with rigid and cable boundaries. For
more applications of fixed point theory, see [20, 21, 24, 25, 27, 31, 32] and the
references therein. Over the years several authors have focused their attention
on single fixed point for different type of operator - J. Olilima et al. [34] showed
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that the modified Mann iteration converges strongly to the (single) fixed point
for a uniformly L−Lipschitzian mapping of Gregus type in Banach space, for
further information on single fixed points the reader may consult [22, 23, 29, 30]
and the references therein. The discussion on coupled fixed point started when
Guo and Lakshmikantham [4] in 1973 introduced the concept of coupled fixed
point. In 2006 T. G. Bhaskar and V. Lakshmikantham in [16] introduced the
concept of coupled fixed point in partially ordered metric spaces. The results of
Bhaskar et al. in [16] inspired V. Lakshmikantham et al. [17] to work more on
coupled fixed point in partially ordered set. For more results see the references
therein.

In 2007 H Long-Guang and Z Xian [6] introduced the concept of cone met-
ric space which is the generalization of metric spaces and they showed that
there exists a unique fixed point for Banach, Kannan and Chatterhea’s Con-
traction maps, these kind of maps can be found in [13], [8] and [15] respectively.
Their results on cone metric spaces and the results of [4, 14, 16, 17] inspired
E. Sabetghadam et al. [2] to state and prove the following theorem on cone
metric space:

Theorem 1.1 (see [2]). Let (X, d) be a complete cone metric space. Sup-
pose that the mapping F : X × X → X satisfies the following contractive
condition for all x, y, u, v ∈ X:

(1.1) d(F (x, y), F (u, v)) ≼ kd(x, u) + ld(y, v),

where k, l are nonnegative constants with k + l < 1.

(1.2) d(F (x, y), F (u, v)) ≼ kd(F (x, y), x) + ld(F (u, v), u),

where k, l are nonnegative constants with k + l < 1.

(1.3) d(F (x, y), F (u, v)) ≼ kd(F (x, y), u) + ld(F (u, v), x),

where k, l are nonnegative constants with k + l < 1. Then F has a unique
coupled fixed point.

In 2012 Olaleru et al. [7] introduced the following definition and lemma,

Definition 1.2 (see [7]). For a nondecreasing mapping T : P → P , we
define the following conditions which will be used in the sequel:

(T1) For every ωn ∈ P, ωn → 0 if and only if Tωn → 0;
(T2) For every ω1, ω2 ∈ P, T (αω1 +βω2) ≼ αT (ω1)+βT (ω2) for α, β ∈ [0, 1).

Lemma 1.3 (see [7]). If a mapping T : P → P satisfies (T1), then, for all
ω ∈ P, T (ω) = 0 ⇐⇒ ω = 0.

Using Definition 1.2 and Lemma 1.3 in [7], Olaleru et al. proved some
coupled fixed point results for a given type of contractive map.
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Theorem 1.4 (see [7]). Let (X, d) be a complete cone metric space. Sup-
pose that the mapping F : X × X → X satisfies the following contractive
condition,

(1.4) T (d(F (x, y), F (u, v))) ≼ T (j), ∀ x, y, u, v ∈ X

where
j = a1d(x, u) + a2d(y, v) + a3d(F (x, y), x) + a4d(F (u, v), u) + a5d(F (x, y), u) +
a6(F (u, v), x) and a1, a2, a3, a4, a5, a6 are nonnegative constants with a1+a2+
a3 + a4 + a5 + a6 < 1 and T : P → P is a nondecreasing mapping satisfying
(T1)− (T2). Then F has a unique coupled fixed point.

Also in [7], Olaleru et al. extended Theorem 1.4 to the integral version of
couple fixed point.

In 2013 Liu et al. [5] introduced the concept of cone metric space with Banach
algebra (Using an attribute of a cone, which is called normality), this result
inspired Xu et al. in [9] to work on a similar concept without using the concept
of normality, hence, they introduced a sequence called ”c-sequence”

In this paper, we prove some coupled fixed point on cone metric spaces over
Banach algebra extending the results of [5, 7, 9].

2. Preliminary

Definition 2.1. (see [18]) Let A be a Banach space in which the operation
of multiplication is defined as follows: for all x, y, z ∈ A, α ∈ F

1. x(yz) = (xy)z.
2. x(y + z) = xy + xz.
3. α(xy) = (αx)y = x(αy).
4. ∥xy∥ ≤ ∥x∥ · ∥y∥.

If these properties are satisfied, then A is called a Banach algebra.

In this work we assume that A has a multiplicative identity e such that
∀ x ∈ A, xe = x = ex. Also, let the inverse of x ∈ A be denoted by x−1.

Proposition 2.2 (see [9]). Let A be a Banach algebra with identity e, and
x ∈ A. If the spectra radius of x, r(x) < 1 i.e.,

(2.1) r(x) = lim
n→∞

∥xn∥ 1
n = inf

n≥1
∥xn∥ 1

n < 1.

Then (e− x) is invertible, i.e. (e− x)−1 =
∞∑
i=0

xi.

Proof. Notice that, if we let r(x) ≤ ∥x∥ ≤ 1, (2.1) will still be true. And in
[18], it was shown that if ∥x∥ < 1 then (e− x) is invertible.
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Let A be a Banach algebra and let P be a subset of A, P is called a cone if
and only if

(i) P is closed, nonempty and {0, e} ⊂ P .
(ii) For α, β ∈ R, α, β > 0 then αP + βP ⊂ P .
(iii) P 2 = PP ⊂ P .
(iv) P ∩ −P = {0}.

Given a cone P ⊂ A, we define a partial ordering ≼ with respect to P by x ≼ y
if and only if y−x ∈ P . We write x < y to indicate that x ≼ y but x ̸= y, while
x ≪ y denotes y − x ∈ intP , where intP denotes the interior of P. If intP ̸= ∅
then P is called a solid cone.
The cone P is called normal if there is a number K > 0 such that for all
x, y ∈ A
(2.2) 0 ≼ x ≼ y implies ∥x∥ ≤ K∥y∥.
The least positive number satisfying equation (2.2) is called the normal constant
[6].
In this paper, we assume that P is a solid cone in A where A is a Banach
algebra and ≼ is the partial ordering with respect to P .

Definition 2.3 (see [6]). Let X be a nonempty set. Suppose the mapping
d : X ×X → A satisfies

(d1) 0 ≼ d(x, y) for all x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≼ d(x, z) + d(z, x) for all x, y, z ∈ X.

Then d is called a cone metric and (X, d) is called a cone metric space over a
Banach Algebra.

Example 2.4. Let A = R and we define the norm

∥x∥ = |x|, for all x ∈ A.

Then, A is a real Banach algebra with unit e = 1.
Let P = {x ∈ A | x ≥ 0}. Then P ⊂ A is a normal cone.
Let X = R, and define the metric d : X ×X → A by

d(x, y) =|x− y|, for all x, y ∈ A.

Then, (X, d) is a cone metric over a Banach algebra.

Example 2.5 (see [9]). Let A = C1
R([0, 1]) with the norm

∥f∥=∥f∥∞+∥f ′∥∞, for all x ∈ A.

Let X = {1, 2, 3}. Define d : X × X → A by d(1, 2)(t) = d(2, 1)(t) =
d(2, 3)(t) = d(3, 2)(t) = et, d(1, 3)(t) = 2et, d(x, x)(t) = 0. We see that (X, d)
is a cone metric space over Banach algebra A without normality.

Definition 2.6 (see [6], [5], [9]). Let (X, d) be a cone metric space over a
Banach algebra A, for x ∈ X and the sequence xn in X, then we define the
following:
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1. xn is said to converge to x ∈ X if for any 0 ≪ c there is a natural
number Nc such that d(xn, x) ≪ c for all n ≥ Nc. We denote this by
either lim

n→∞
xn = x or xn → x(n → ∞).

2. xn is said to be Cauchy if for any 0 ≪ c there is a natural number Nc

such that d(xn, xm) ≪ c for all n,m ≥ Nc.
3. (X, d) is said to be a complete cone metric space if every Cauchy sequence

is convergent.

Let us state some lemmas that will be useful in the proof of our main results.

Lemma 2.7 (see [6]). Let (X, d) be a cone metric space over a Banach
algebra and let xn be a sequence in X. Then we say that xn → x as n → ∞ if
and only if

(2.3) lim
n→∞

d(xn, x) = 0.

Corollary 2.8. Let (X, d) be a cone metric space over a Banach algebra
and let xn be a sequence in X. Then we say that xn → 0 as n → ∞ if and
only if

(2.4) ∥xn∥ → 0 as n → ∞.

Lemma 2.9 (see [6]). Let (X, d) be a cone metric space over a Banach
algebra and let xn be a sequence in X. Then we say that xn is Cauchy if and
only if

(2.5) lim
n→∞

d(xn, xm) = 0.

Lemma 2.10 (see [9]). Let P be a solid cone in a Banach algebra A and
let {xn} be a sequence in P . Then the following conditions are equivalent:

1. {xn} → 0 as n → ∞.
2. for each c ≫ 0 there exists n0 ∈ N such that xn ≺ c for n ≥ n0.
3. for each c ≫ 0 there exists n1 ∈ N such that xn ≼ c for n ≥ n0.

Lemma 2.11 (see [9]). Let A be a Banach algebra and let x, y be vectors
in A. If x and y commute, then the following hold:

(i) r(xy) ≤ r(x)r(y).
(ii) r(x+ y) ≤ r(x) + r(y).
(iii) |r(x)− r(y)| ≤ r(x− y).

Lemma 2.12 (see [9]). Let A be a Banach algebra and let k be a vector in
A. If 0 ≤ r(k) < 1, then we have r((e− k)−1) ≤ (1− r(k))−1.

Remark 2.13. If r(x) < 1 for x ∈ A, then it is easy to see that ∥xn∥ →
0 as n → ∞. Also, from Lemma 2.7, xn → 0 as n → ∞.
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3. Main Results

Theorem 3.1. Let (X, d) be a complete cone metric space over Banach
algebra A, and let P be the underlining solid cone with

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 ∈ P,

where r(a1)+r(a2)+r(a3)+r(a4)+r(a5)+2r(a6)+r(a7)+r(a8)+2r(a10) < 1.
Suppose the map F : X ×X → X satisfies the contractive condition:

(3.1) T (d(F (x, y), F (u, v))) ≼ T (j), ∀ x, y, u, v ∈ X

where j = a1d(x, u)+a2d(y, v)+a3d(F (x, y), x)+a4d(F (u, v), u)+a5d(F (x, y), u)+
a6d(F (u, v), x)+a7d(F (y, x), y)+a8d(F (v, u), v)+a9d(F (y, x), v)+a10d(F (v, u), y)
and T : P → P is a nondecreasing mapping satisfying (T1)− (T2). Then F has
a unique coupled fixed point.

Proof. Let x0, y0 be any points in X, set
x1 = F (x0, y0), y1 = F (y0, x0) inductively we have that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn) For all n ∈ N.
From the contractive condition in (3.1), we have the following:

T (d(xn, xn+1)) = T (d(F (xn−1, yn−1), F (xn, yn)))

≼ T (a1d(xn−1, xn) + a2d(yn−1, yn) + a3d(F (xn−1, yn−1),

xn−1) + a4d(F (xn, yn), xn) + a5d(F (xn−1, yn−1), xn) +

a6d(F (xn, yn), xn−1) + a7d(F (yn−1, xn−1), yn−1) +

a8d(F (yn, xn), yn) + a9d(F (yn−1, xn−1), yn) +

a10d(F (yn, xn), yn−1))

= T (a1d(xn−1, xn) + a2d(yn−1, yn) + a3d(xn−1, xn) +

a4d(xn, xn+1) + a5d(xn, xn) + a6d(xn+1, xn−1) +

a7d(yn−1, yn) + a8d(yn, xn+1) + a9d(yn−1, yn) +

a10d(yn+1, yn−1))

= T [(a1 + a3 + a6)d(xn−1, xn) + (a4 + a6)d(xn, xn+1) +

(a2 + a7 + a10)d(yn−1, yn) + (a8 + a10)d(yn, yn+1)]

≼ (a1 + a3 + a6)T (d(xn−1, xn)) + (a4 + a6)T (d(xn, xn+1)) +

(a2 + a7 + a10)T (d(yn−1, yn)) + (a8 + a10)T (d(yn, yn+1)).

Therefore,

T (d(xn, xn+1)) ≼ (a1 + a3 + a6)T (d(xn−1, xn)) + (a4 + a6)T (d(xn, xn+1)) +

(a2 + a7 + a10)T (d(yn−1, yn)) + (a8 + a10)T (d(yn, yn+1)).(3.2)

Similarly,

T (d(yn, yn+1)) ≼ (a1 + a3 + a6)T (d(yn−1, yn)) + (a4 + a6)T (d(yn, yn+1)) +

(a2 + a7 + a10)T (d(xn−1, xn)) + (a8 + a10)T (d(xn, xn+1)).(3.3)
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Adding equations (3.2) and (3.3) we have the following

T (d(xn, xn+1)) + T (d(yn, yn+1)) ≼ (a1 + a2 + a3 + a6 + a7 + a10) ·
[T (d(xn−1, xn)) + T (d(yn−1, yn))] +

(a4 + a6 + a8 + a10)[T (d(xn, xn+1))

+T (d(yn, yn+1))],

since r(a4+a6+a8+a10) ≤ r(a4)+r(a6)+r(a8)+r(a10) < 1 then by Proposition
2.2, (e− a4 − a6 − a8 − a10) is invertible. Therefore, by Definition 1.2, we have
the following,

T (d(xn, xn+1) + d(yn, yn+1)) ≼ T (d(xn, xn−1)) + T (d(yn, yn−1))

≼ a1 + a2 + a3 + a6 + a7 + a10
e− a4 − a6 − a8 − a10

T (d(xn, xn−1))

+
a1 + a2 + a3 + a6 + a7 + a10

e− a4 − a6 − a8 − a10
T (d(yn, yn−1))

=
a1 + a2 + a3 + a6 + a7 + a10

e− a4 − a6 − a8 − a10
·[

T (d(xn, xn−1)) + T (d(yn, yn−1))
]
.

Let λ =
a1 + a2 + a3 + a6 + a7 + a10

e− a4 − a6 − a8 − a10
. Therefore, for all n ∈ N, we have that,

T (d(xn, xn+1) + d(yn, yn+1)) ≼ λT (d(xn, xn−1)) + T (d(yn, yn−1))

≼ λ2[T (d(xn−1, xn−2)) + T (d(yn−1, yn−2))]

...

≼ λn[T (d(x1, x0)) + T (d(y1, y0))].

Now, we show that r(λ) < 1. By Lemmas 2.11 and 2.12, the following can be
derived,

r(λ) = r[(a1 + a2 + a3 + a6 + a7 + a10)(e− a4 − a6 − a8 − a10)
−1]

< r(a1 + a2 + a3 + a6 + a7 + a10) · r(e− a4 − a6 − a8 − a10)
−1

<
r(a1) + r(a2) + r(a3) + r(a6) + r(a7) + r(a10)

1− r(a4)− r(a6)− r(a8)− r(a10)
< 1.

We can now show that {xn} and {yn} are Cauchy sequences respectively.

Case 1:: If d(x1, x0)) + T (d(y1, y0) = 0 ⇒ (x0, y0) is a couple fixed point
of F .

Case 2:: Suppose d(x1, x0)) + T (d(y1, y0)) ̸= 0. Then for n ≥ m, we have
that

d(xm, xn) ≼ d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

and

d(ym, yn) ≼ d(ym, ym+1) + d(ym+1, ym+2) + · · ·+ d(yn−1, yn).
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Therefore,

T (d(xm, xn) + d(ym, yn)) ≼ T (d(xm, xm+1) + d(xm+1, xm+2) + · · ·+
d(xn−1, xn) + d(ym, ym+1) + d(ym+1, ym+2)

+ · · ·+ d(yn−1, yn))

= T (d(xm, xm+1) + d(ym, ym+1) +

d(xm+1, xm+2) + d(ym+1, ym+2) + · · ·+
d(xn−1, xn) + d(yn−1, yn))

≼ T (d(xm, xm+1) + d(ym, ym+1)) +

T (d(xm+1, xm+2) + d(ym+1, ym+2)) + · · ·+
T (d(xn−1, xn) + d(yn−1, yn))

≼ λm[T (d(x1, x0)) + T (d(y1, y0))] + λm+1 ·
[T (d(x1, x0)) + T (d(y1, y0))] + · · ·+ λn−1 ·
[T (d(x1, x0)) + T (d(y1, y0))]

= (e+ λ+ λ2 + · · ·+ λn−m−1)λm[T (d(x1, x0))

+T (d(y1, y0))]

≼

( ∞∑
i=0

λi

)
λm[T (d(x1, x0)) + T (d(y1, y0))]

= (e− λ)−1λm[T (d(x1, x0)) + T (d(y1, y0))].

Since, r(λ) < 1 by Remark 2.13, we can conclude that

∥(e− λ)−1λm[T (d(x1, x0)) + T (d(y1, y0))]∥ → 0,

therefore,

(e− λ)−1λm[T (d(x1, x0)) + T (d(y1, y0))] ≪ c ⇒ T (d(xm, xn) + d(ym, yn)) ≪ c.

Hence, both xn and yn are Cauchy sequences in X, and since X is complete it
implies that

xn → x∗ and yn → y∗ as n → ∞.



Couple fixed point on Cone Metric Spaces over Bananch Algebra 277

Next, we are to show that (x∗, y∗) is a coupled fixed point i.e. x∗ = F (x∗, y∗),
y∗ = F (y∗, x∗).

T (d(F (x∗, y∗), x∗)) ≼ T (d(F (x∗, y∗), xn+1) + d(xn+1, x
∗))

= T (d(F (x∗, y∗), F (xn, yn) + d(xn+1, x
∗))

≼ T (d(F (x∗, y∗), F (xn, yn)) + T (d(xn+1, x
∗))

≼ a1T (d(xn, x
∗)) + a2T (d(yn, y

∗)) +

a3dT (d(F (x∗, y∗), x∗)) + a4T (d(F (xn, yn), xn)) +

a5T (d(F (x∗, y∗), xn)) + a6T (d(F (xn.yn), x
∗))

+a7T (d(F (y∗, x∗), y∗)) + a8T (d(F (yn, xn), yn))

+a9T (d(F (y∗, x∗), yn)) + a10T (d(F (yn, xn), y
∗))

+d(xn+1, x
∗)

= a1T (d(xn, x
∗)) + a2T (d(yn, y

∗)) +

a3dT (d(F (x∗, y∗), x∗)) + a4T (d(xn+1, xn)) +

a5T (d(F (x∗, y∗), xn)) + a6T (d(F (xn+1, x
∗)) +

a7T (d(F (y∗, x∗), y∗)) + a8T (d(yn+1, yn)) +

a9T (d(F (y∗, x∗), yn)) + a10T (d(yn+1, y
∗)) +

d(xn+1, x
∗).

Hence

T (d(F (x∗, y∗), x∗)) ≼ a1T (d(xn, x
∗)) + a2T (d(yn, y

∗)) +

a3dT (d(F (x∗, y∗), x∗)) + a4T (d(xn+1, xn)) +

a5T (d(F (x∗, y∗), xn)) + a6T (d(xn+1, x
∗)) +

a7T (d(F (y∗, x∗), y∗)) + a8T (d(yn+1, yn)) +

a9T (d(F (y∗, x∗), yn)) + a10T (d(yn+1, y
∗))

+d(xn+1, x
∗).(3.4)

From Lemma 2.7, if xn → x∗ then lim
n→∞

d(xn, x
∗) = 0 and by Lemma 1.3

T (d(xn, x
∗)) = 0. Therefore, we have the following as n → ∞:

T (d(F (x∗, y∗), x∗)) ≼ (a3 + a5)T (d(F (x∗, y∗), x∗)) +

(a7 + a9)T (d(F (y∗, x∗), y∗)).(3.5)

Similarly,

T (d(F (y∗, x∗), y∗)) ≼ (a3 + a5)T (d(F (y∗, x∗), y∗)) +

(a7 + a9)T (d(F (x∗, y∗), x∗)).(3.6)
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From (3.5) and (3.6) we have,

T (d(F (x∗, y∗), x∗)) + T (d(F (y∗, x∗), y∗)) ≼ (a3 + a5 + a7 + a9) ·[
T (d(F (x∗, y∗), x∗)) +

T (d(F (y∗, x∗), y∗))
]
.

Since, r(a3 + a5 + a7 + a9) ≤ r(a3) + r(a5) + r(a7) + r(a9) < 1 ⇒ (e − (c3 +
c5 + c7 + c9))

−1 exists, then we can conclude that,

(3.7) T (d(F (x∗, y∗), x∗) + d(F (y∗, x∗), y∗)) = 0.

Applying Lemma 1.3 on equation (3.7), we have that,

(3.8) d(F (x∗, y∗), x∗) = 0 and d(F (y∗, x∗), y∗) = 0.

Hence, (x∗, y∗) is the couple fixed point.
Next, we show that this coupled fixed point is unique.
Suppose there exists another coupled fixed point say (x0, y0) ∈ X ×X. Then

T (d(x0, x
∗)) = T (d(F (x0, y0), F (x∗, y∗))) ≼ T (a1d(x0, x

∗) + a2d(y0, y
∗) +

a3d(F (x0, y0), x0) + a4d(F (x∗, y∗), x∗) + a5d(F (x0, y0), x
∗)

+a6d(F (x∗, y∗), x0) + a7d(F (y0, x0), y0) + a8d(F (y∗, x∗), y∗)

+a9d(F (y0, x0), y
∗) + a10d(F (y∗, x∗), y0))

= T (a1d(x0, x
∗) + a2d(y0, y

∗) + a3d(x0, x0) + a4d(x
∗, x∗) +

a5d(x0, x
∗) + a6d(x

∗, x0)) + a7d(y0, y0) + a8d(y
∗, y∗) +

a9d(y0, y
∗) + a10d(y

∗, y0)

= T ((a1 + a5 + a6)d(x0, x
∗) + (a2 + a9 + a10)d(y0, y

∗)).

Hence

(3.9) T (d(x0, x
∗)) ≼ T ((a1 + a5 + a6)d(x0, x

∗)) + T ((a2 + a9 + a10)d(y0, y
∗)).

Similarly,

(3.10) T (d(y0, y
∗)) ≼ T ((a1 + a5 + a6)d(y0, y

∗))+ (a2 + a9 + a10)T (d(x0, x
∗)).

Therefore,

T (d(x0, x
∗)+d(y0, y

∗)) ≼ (a1+a2+a5+a6+a9+a10)T (d(x0, x
∗)+d(y0, y

∗)).

Let β = a1 + a2 + a5 + a6 + a9 + a10. Hence, T (d(x0, x
∗) + d(y0, y

∗)) ≼
βT (d(x0, x

∗) + d(y0, y
∗)). Since r(β) < 1 then T (d(x0, x

∗) + d(y0, y
∗)) = 0 ⇒

x0 = x∗ and y0 = y∗, therefore (x∗, y∗) is a unique coupled fixed point. This
completes the proof.

We can observe that if T = Id, then we have the following corollary.
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Corollary 3.2. Let (X, d) be a complete cone metric space over Banach
algebra A, and let P be the underlining solid cone with
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 ∈ P where r(a1) + r(a2) + r(a3) + r(a4) +
r(a5)+2r(a6)+ r(a7)+ r(a8)+2r(a10) < 1. Suppose the map F : X×X → X
satisfies the contractive condition:

(3.11) d(F (x, y), F (u, v)) ≼ j, ∀ x, y, u, v ∈ X

where

j = a1d(x, u)+a2d(y, v)+a3d(F (x, y), x)+a4d(F (u, v), u)+a5d(F (x, y), u)+
a6d(F (u, v), x) + a7d(F (y, x), y) + a8d(F (v, u), v) + a9d(F (y, x), v) +
a10d(F (v, u), y). Then F has a unique coupled fixed point.

Letting r(a1) = · · · = r(a5) = 2r(a6) = · · · = 2r(a10) = r(a), we have the
following corollary.

Corollary 3.3. Let (X, d) be a complete cone metric space over Banach
algebra A, and let P be the underlining solid cone with a1, a2, a3, a4, a5, a6, a7
, a8, a9, a10 ∈ P where r(a1) = · · · = r(a5) = 2r(a6) = · · · = 2r(a10) = r(a).
Suppose the map F : X ×X → X satisfies the contractive condition:

(3.12) T (d(F (x, y), F (u, v))) ≼
( a

10

)
T (j), ∀ x, y, u, v ∈ X

where a ∈ [0, 1) is a nonnegative constant and T : P → P is a nondecreasing
mapping satisfying (T1)− (T2). Then F has a unique coupled fixed point.

Theorem 3.4. Let (X, d) be a complete cone metric space over Banach
algebra A, and let P be the underlining solid cone with a1, a2, a3, a4, a5, a6 ∈ P
where r(a1) + r(a2) + r(a3) + r(a4) + r(a5) + 2r(a6) < 1. Suppose the map
F : X ×X → X satisfies the contractive condition:

(3.13) T (d(F (x, y), F (u, v))) ≼ T (j), ∀ x, y, u, v ∈ X

where

j = a1d(x, u)+a2d(y, v)+a3d(F (x, y), x)+a4d(F (u, v), u)+a5d(F (x, y), u)+
a6(F (u, v), x) and T : P → P is a nondecreasing mapping satisfying (T1)−(T2).
Then F has a unique coupled fixed point.

Proof. Let x0, y0 be any points in X, set
x1 = F (x0, y0), y1 = F (y0, x0) inductively we have that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn)
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For all n ∈ N. from (3.13), we get

T (d(xn, xn+1)) = T (d(F (xn−1, yn−1), F (xn, yn)))

≼ T (a1d(xn−1, xn) + a2d(yn−1, yn) +

a3d(F (xn−1, yn−1), xn−1) +

a4d(F (xn, yn), xn) + a5d(F (xn−1, yn−1),

xn) + a6d(F (xn, yn), xn−1))

= T (a1d(xn−1, xn) + a2d(yn−1, yn) +

a3d(xn−1, xn) + a4d(xn, xn+1) +

a5d(xn, xn) + a6d(xn+1, xn−1)

= T ((a1 + a3 + a6)d(xn−1, xn) + (a4 + a6) ·
d(xn, xn+1) + a2d(yn−1, yn))

≼ (a1 + a3 + a6)T (d(xn−1, xn)) + (a4 + a6) ·
T (d(xn, xn+1)) + a2T (d(yn−1, yn))

(e− (a4 + a6))T (d(xn, xn+1)) ≼ (a1 + a3 + a6)T (d(xn−1, xn)) +

a2T (d(yn−1, yn)),

since, r(a4 + a6) ≤ r(a4) + r(a6) < 1 then, by Proposition 2.2, (e− a4 − a6) is
invertible. Therefore, we have

T (d(xn, xn+1)) ≼ a1 + a3 + a6
e− a4 − a6

T (d(xn−1, xn)) +

a2
e− a4 − a6

T (d(yn, yn−1)).(3.14)

Similarly,

T (d(yn, yn+1)) ≼ a1 + a3 + a6
e− a4 − a6

T (d(yn−1, yn)) +

a2
e− a4 − a6

T (d(xn, xn−1)).(3.15)

From Definition 1.2, we have the following,

T (d(xn, xn+1) + d(yn, yn+1)) ≼ T (d(xn, xn−1)) + T (d(yn, yn−1))

≼ a1 + a2 + a3 + a6
e− a4 − a6

T (d(xn, xn−1)) +

a1 + a2 + a3 + a6
e− a4 − a6

T (d(yn, yn−1))

=
a1 + a2 + a3 + a6

e− a4 − a6

[
T (d(xn, xn−1)) +

T (d(yn, yn−1))
]
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Let λ =
a1 + a2 + a3 + a6

e− a4 − a6
. Then

(3.16) T (d(xn, xn+1) + d(yn, yn+1)) ≼ λT (d(xn, xn−1)) + T (d(yn, yn−1)).

Therefore, for all n ∈ N, we have,

T (d(xn, xn+1) + d(yn, yn+1)) ≼ λT (d(xn, xn−1)) + T (d(yn, yn−1))

≼ λ2[T (d(xn−1, xn−2)) + T (d(yn−1, yn−2))]

...

≼ λn[T (d(x1, x0)) + T (d(y1, y0))]

Now, we show that r(λ) < 1. Lemma 2.11 and 2.12, makes the following to be
true

r(λ) = r[(a1 + a2 + a3 + a6)(e− a4 − a6)
−1]

≤ r(a1 + a2 + a3 + a6) · r(e− a4 − a6)
−1

<
r(a1) + r(a2) + r(a3) + r(a6)

1− r(a4)− r(a6)
< 1.

Following the same procedure as Theorem 3.2, we can conclude that {xn}
and {yn} are Cauchy sequences in X, and since X is complete it implies that
xn → x∗(n → ∞) and yn → y∗(n → ∞).

Next, we are to show that (x∗, y∗) is a coupled fixed point i.e. x∗ =
F (x∗, y∗), y∗ = F (y∗, x∗).

T (d(F (x∗, y∗), x∗)) ≼ T (d(F (x∗, y∗), xn+1) + d(xn+1, x
∗))

= T (d(F (x∗, y∗), F (xn, yn) + d(xn+1, x
∗))

≼ T (d(F (x∗, y∗), F (xn, yn)) + T (d(xn+1, x
∗))

≼ a1T (d(xn, x
∗)) + a2T (d(yn, y

∗)) +

a3dT (d(F (x∗, y∗), x∗)) + a4T (d(F (xn, yn), xn)) +

a5T (d(F (x∗, y∗), xn)) + a5T (d(F (xn.yn), x
∗))

+d(xn+1, x
∗).

We know that if xn → x∗ then lim d(xn, x
∗) = 0. Hence, by Lemma 1.3

limT (d(xn, x
∗)) = 0. Therefore, we have the following as n → ∞:

T (d(F (x∗, y∗), x∗)) ≼ a3T (d(F (x∗, y∗), x∗)) + a4T (d(F (x∗, y∗), x∗)) +

a5T (d(F (x∗, y∗), x∗)) + a6T (d(F (x∗, y∗), x∗))

Therefore,

(e− (a3 + a4 + a5 + a6))T (d(F (x∗, y∗), x∗)) ≼ 0 ⇒ T (d(F (x∗, y∗), x∗)) = 0,

Similarly,

T (d(F (y∗, x∗), y∗)) = 0.
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Hence, (x∗, y∗) is the couple fixed point.
Next, we show that this coupled fixed point is unique.
Suppose there exists another coupled fixed point say (x0, y0) ∈ X ×X. Then

T (d(x0, x
∗)) = T (d(F (x0, y0), F (x∗, y∗))) ≼ T (a1d(x0, x

∗) + a2d(y0, y
∗) +

a3d(F (x0, y0), x0) + a4d(F (x∗, y∗), x∗) + a5d(F (x0, y0), x
∗)

+a6d(F (x∗, y∗), x0))

= T (a1d(x0, x
∗) + a2d(y0, y

∗) + a3d(x0, x0) + a4d(x
∗, x∗) +

a5d(x0, x
∗) + a6d(x

∗, x0))

= T ((a1 + a5 + a6)d(x0, x
∗) + a2d(y0, y

∗)).

Similarly,

T (d(y0, y
∗)) ≼ T ((a1 + a5 + a6)d(y0, y

∗) + a2d(x0, x
∗)).

Therefore,

T (d(x0, x
∗) + d(y0, y

∗)) ≼ (a1 + a2 + a5 + a6)T (d(x0, x
∗) + d(y0, y

∗)).

Let β = a1 + a2 + a5 + a6. Hence, T (d(x0, x
∗) + d(y0, y

∗)) ≼ βT (d(x0, x
∗) +

d(y0, y
∗)). Since r(β) < 1 then T (d(x0, x

∗)+d(y0, y
∗)) = 0 ⇒ x0 = x∗ and y0 =

y∗, therefore (x∗, y∗) is a unique coupled fixed point.

Let T be the identity function. We have the following corollary,

Corollary 3.5. Let (X, d) be a complete cone metric space over Banach
algebra A, and let P be the underlining solid cone with a1, a2, a3, a4, a5, a6 ∈ P
where r(a1) + r(a2) + r(a3) + r(a4) + r(a5) + 2r(a6) < 1. Suppose the map
F : X ×X → X satisfies the contractive condition:

(3.17) d(F (x, y), F (u, v)) ≼ j, ∀ x, y, u, v ∈ X

where

j = a1d(x, u)+a2d(y, v)+a3d(F (x, y), x)+a4d(F (u, v), u)+a5d(F (x, y), u)+
a6(F (u, v), x). Then F has a unique coupled fixed point.

Remark 3.6. (i) IfA is just a Banach space and we assume that
∑6

i=1 ai <
1 then we have the following:
(a) in Theorem 3.2: then Theorem 3.2 become [7, Theorem 2.1]
(b) In Theorem 3.1: if ai = 0∀i = 7, 8, . . . , 10 we also obtain [7, Theorem

2.1]
(ii) In Corollary 3.1 if ai = 0 ∀ i = 3, 4 . . . , 10 we obtain [2, Theorem 2.2].

If ai = 0 ∀ i = 1, 2, 5 . . . , 10 we obtain [2, Theorem 2.5]. If ai = 0 ∀ i =
1, . . . 4, 7, . . . , 10 we obtain [2, Theorem 2.6].
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4. Some Coupled Fixed Point Satisfying Some Contractive Map
of Integral Type

The concept of fixed point of contractive map of integral type was introduced
by Branciari [1] in 2002. And several results followed; of important to this
work is the result of F. Khojasteh et al. [3], where they introduced concept
of subadditive cone integrable function φ, and then, showed that there exists
a unique fixed point for the contractive map of integral type. We need some
definitions which appear in work of Khojasteh et al. [3] in proving our results.

Definition 4.1 (see [3]). Suppose that P is a normal cone inA. Let a, b ∈ A
and a < b. We define

(4.1)
[a, b] := {x ∈ A : x = tb+ (1− t)a, for some t ∈ [0, 1]}
[a, b) := {x ∈ A : x = tb+ (1− t)a, for some t ∈ [0, 1)}

Definition 4.2 (see [3]). The set {a = x0, x1, . . . , xn = b} is called a
partition for [a, b] if and only if the sets {[xi−1, xi)}ni−1 are pairwise disjoint
and [a, b] = {

∪n
i−1[xi−1, xi)} ∪ {b}.

Definition 4.3 (see [3]). For each partition Q of [a, b] and each increasing
function φ : [a, b] → P , we define cone lower summation and cone upper
summation as

(4.2)
LCon
n (φ,Q) =

∑n−1
i=0 φ(xi)∥xi − xi+1∥,

UCon
n (φ,Q) =

∑n−1
i=0 φ(xi+1)∥xi − xi+1∥,

respectively.

Definition 4.4 (see [3]). Suppose that P is a normal cone inA. φ : [a, b] →
P is called an integrable function on [a, b] with respect to cone P or simply,
cone integrable function, if and only if for all partition Q of [a, b]

(4.3) lim
n→∞

LCon
n (φ,Q) = SCon = lim

n→∞
UCon
n (φ,Q),

where SCon must be unique.
We show the common value SCon by

(4.4)

∫ b

a

φ(x)dp(x) or simply

∫ b

a

φdp.

Let L1([a, b], P ) denote the set of all cone integrable functions.

Lemma 4.5 (see [3]). (1) If [a, b] ⊆ [a, c], then
∫ b

a
fdp ≼

∫ c

a
fdp, for f ∈

L1([a, b], P ).

(2)
∫ b

a
(αf + βg)dp = α

∫ b

a
fdp + β

∫ b

a
gdp, for f, g ∈ L1([a, b], P ) and α, β ∈ R.



284 Hudson Akewe, Joshua Olilima, and Adesanmi Mogbademu

Definition 4.6 (see [3]). The function φ : P → A is called subadditive
cone integrable function if and only if for all a, b ∈ P

(4.5)

∫ a+b

0

φ(t)dt ≼
∫ a

0

φ(t)dt+

∫ b

0

φ(t)dt.

Example 4.7 (see [3]). Let A = X = R, d(x, y) = |x − y|, P = [0,+∞),

and φ(t) =
1

t+ 1
for all t > 0. Then for all a, b ∈ P ,∫ a+b

0

dt

t+ 1
≼
∫ a

0

dt

t+ 1
+

∫ b

0

dt

t+ 1
.

It is sufficient to show that,

ln(a+ b+ 1) ≼ ln(a+ 1) + ln(b+ 1).

Observe that, a+ b+ 1 ≼ a+ b+ 1 + ab ≼ (a+ 1)(b+ 1). Therefore,
ln(a+ b+ 1) ≼ ln[(a+ 1)(b+ 1)] = ln(a+ 1) + ln(b+ 1).

Theorem 4.8 (see [3]). Let (X, d) be a complete cone metric space and let
P be a normal cone. Suppose that φ : P → P is a nonvanishing map and a
subadditive cone integrable on each [a, b] ⊂ P such that for each ϵ ≫ 0, 0 ≪∫ ϵ

0
φ(t)dt. If T : X → X is a map such that, for all x, y ∈ X,

(4.6)

∫ d(Tx,Ty)

0

φ(t)dt ≼ k

∫ d(x,y)

0

φ(t)dt ∀ x, y ∈ X,

for some k ∈ [0, 1), then T has a unique fixed point x∗ ∈ X. And for each
x ∈ X, Tn(x) → x∗ as n → ∞.

Theorem 4.1 extends the result of Branciari [1] to cone metric space. Now,
using the idea of Khojasteh et al., Definition 2.4 and Lemma 2.6 Olaleru et al.
[7] was able to show that the contractive map of integral type on a cone metric
space has a unique coupled fixed point.

In this section, we extend the result of Olaleru et al. [7, Theorem 3.1] to
cone metric space over Banach algebra.

Theorem 4.9. Let (X, d) be a cone metric space over banach algebra and
let P be a normal cone. Let φ : P → P be a nonvanishing map and a subbadi-
tive cone integrable on each [a, b]. Suppose that the mapping F : X ×X → X
satisfies the following contractive condition

(4.7)

∫ d(F (x,y),F (u,v))

0

φ(t)dt ≼
∫ j(x,y,u,v)

0

φ(t)dt ∀ x, y, u, v ∈ X,

where

j(x, y, u, v) = a1d(x, u) + a2d(y, v) + a3d(F (x, y), x) + a4d(F (u, v), u) +

a5d(F (x, y), u) + a6d(F (u, v), x) + a7d(F (y, x), y) +

a8d(F (v, u), v) + a9d(F (y, x), v) + a10d(F (v, u), y),
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 ∈ P where r(a1) + r(a2) + r(a3) + r(a4) +
r(a5) + 2r(a6) + r(a7) + r(a8) + 2r(a10) < 1. Then F has a unique coupled
fixed point.

Proof. The proof of Theorem 4.9 follows from the method of proof of Theo-

rem 3.1 if T (j(x, y, u, v)) =
∫ j(x,y,u,v)

0
. Thus, we conclude that F has a unique

coupled fixed point. This ends the proof.
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