DOI QR코드

DOI QR Code

Simulation of different carbon structures on significant mechanical and physical properties based on MDs method

  • Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Ghorbanpour-Arani, Amirabbas (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2020.03.14
  • Accepted : 2021.04.06
  • Published : 2021.06.25

Abstract

In this research, the nanocomposite boxes are simulated using polyurethane (PU) as a thermoplastic polymer with various reinforcements including carbon nanoparticles (CNPs), graphene platelets (GPLs), single-walled carbon nanotubes (SWCNTs), and double-walled carbon nanotubes (DWCNTs), which are as biocompatible and biodegradable. To predict the mechanical and physical properties of each nanocomposite boxes, the molecular dynamics (MDs) method with Materials studio software has been applied. Ultimately, all properties including mechanical and physical properties (Young's modulus, shear modulus, Poisson's ratio, bulk modulus, and density) for all four simulated nanocomposite boxes are achieved and compared to each other. To increase the accuracy of this simulation, it is attempted to keep the number of carbon atoms in each simulation the same. It is noteworthy that by changing the state of CNPs to SWCNTs-DWCNTs, density, Young's modulus, shear modulus, bulk modulus and Poisson's ratio of nanocomposite from CNPs to DWCNTs approximately becomes 5.7, 10.25, 28.63, 96 and 1.39 times, respectively. Then, the stiffness matrix are obtained by Materials studio software. Moreover, the obtained results from this research are validated with the results of the literature. Also, the mechanical and physical properties of nanocomposite are recommended before fabrication. The manufacturing of this nanocomposite is used for biomedical cases such as artificial vessels and piping.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 891238/20.

References

  1. Aghadavoudi, F., Golestanian, H. and Tadi Beni, Y. (2018), "Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling", Polym. Compos., 39(12), 4513-4523. https://doi.org/10.1002/pc.24557.
  2. Anvari, M., Mohammadimehr, M. and Amiri, A. (2020) "Vibration behavior of a micro cylindrical sandwich panel reinforced by graphene platelet", J. Vib. Control, 26(13-14), 1311-1343. https://doi.org/10.1177/1077546319892730.
  3. AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A/Solid., 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.
  4. Ayatollahi, M.R., Naeemi, A.R. and Alishahi, E. (2015), "Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites", Struct. Eng. Mech., 56(2), 157-167. https://doi.org/10.12989/sem.2015.56.2.157.
  5. Bai, G., Wang, C., Yang, Y. and Shao, M.H. (2018), "The Application of Graphite in the Preparation of Cathode Material Li3V2 (PO4) 3/C", Chem. Select, 3(23), 6328-6333. https://doi.org/10.1002/slct.201800933.
  6. Bandaru, R. (2007), "Electrical properties and applications of carbon nanotube structures", J. Nanosci. Nanotechnol., 7(4-5), 1239-1267. https://doi.org/10.1166/jnn.2007.307.
  7. Bansal, P.P. and Sidhu, R. (2017), "Mechanical and durability properties of fluoropolymer modified cement mortar", Struct. Eng. Mech., 63(3), 317-327. https://doi.org/10.12989/sem.2017.63.3.317.
  8. Barzoki, A.A.M., Loghman, A. and Ghorbanpour Arani, A. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., 53(3), 497-517. https://doi.org/10.12989/sem.2015.53.3.497.
  9. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P. and Faridbod, F. (2018), "Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine", J. Rare Earths, 36(7), 750-757. https://doi.org/10.1016/j.jre.2018.01.010.
  10. Chehreh Chelgani, S., Rudolph, M., Kratzsch, R., Sandmann, D. and Gutzmer, J. (2016), "A review of graphite beneficiation techniques", Min. Proc. Extract. Metal. Rev., 37(1), 58-68. https://doi.org/10.1080/08827508.2015.1115992.
  11. Cherng, J.Y., Hou, T.Y., Shih, M.F., Talsma, H. and Hennink, W.E. (2013), "Polyurethane-based drug delivery systems", Int. J. Pharmaceut., 450(1-2), 145-162. https://doi.org/10.1016/j.ijpharm.2013.04.063.
  12. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral doublewalled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  13. Dimiev, A.M., Shukhina, K., Behabtu, N., Pasquali, M. and Tour, J.M. (2019), "Stage transitions in graphite intercalation compounds: role of the graphite structure", J. Phys. Chem. C, 123(31), 19246-19253. https://doi.org/10.1021/acs.jpcc.9b06726.
  14. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A. and Joo, S.W. (2014), "Carbon nanotubes: properties, synthesis, purification, and medical applications", Nanos. Res. Let., 9(1), 393. https://doi.org/10.1186/1556-276X-9-393.
  15. Eiken, J. and Bottger, B. (2018), "A multi-phase-field approach for solidification with non-negligible volumetric expansion-application to graphite growth in nodular cast iron", Tran. Indian Inst. Metal., 71(11), 2725-2729. https://doi.org/10.1007/s12666-018-1427-4.
  16. Evers, K., Porwal, H., Todd, R.I. and Grobert, N. (2019), "MWCNT-coated alumina micro-platelets for nacre-like biomimetic composites", Carbon, 145, 586-595. https://doi.org/10.1016/j.carbon.2019.01.060.
  17. Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S. and Khandan, A. (2019), "A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical Investigation", J. Nanoanal., 6(3), 172-184. https://doi.org/10.22034/jna.2019.584848.1134.
  18. Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Comput. Mech., 7(2), 101-111. https://doi.org/10.22055/jacm.2020.32902.2097.
  19. Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W. and Gates, T.S. (2003), "The stress-strain behavior of polymer- nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.
  20. Frogley, M.D., Ravich, D. and Wagner, H.D. (2003), "Mechanical properties of carbon nanoparticle-reinforced elastomers", Compos. Sci. Technol., 63(11), 1647-1654. https://doi.org/10.1016/S0266-3538(03)00066-6.
  21. Fu, C., Liu, J., Xia, H. and Shen, L. (2015), "Effect of structure on the properties of polyurethanes based on aromatic cardanol-based polyols prepared by thiol-ene coupling", Prog. Organic Coat., 83, 19-25. https://doi.org/10.1016/j.porgcoat.2015.01.020.
  22. Gadalla, M. and El Kadi, H. (2009), "Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions", Struct. Eng. Mech., 32(3), 429-445. https://doi.org/10.12989/sem.2009.32.3.429.
  23. Ghorbanpour Arani, A., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25(3), 809-820. https://doi.org/10.1007/s12206-011-0127-3.
  24. Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.
  25. Ghorbanpour Arani, A., Rahnama Mobarakeh, M., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.
  26. Gojny, F.H., Wichmann, M.H., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study", Compos. Sci. Technol., 65(15-16), 2300-2313. https://doi.org/10.1016/j.compositesa.2005.02.007.
  27. Gonzalez-Garcia, Y., Gonzalez, S. and Souto, R.M. (2007), "Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection", Corr. Sci., 49(9), 3514-3526. https://doi.org/10.1016/j.corsci.2007.03.018.
  28. Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study", Physica A: Stat. Mech. Its Appl., 123995. https://doi.org/10.1016/j.physa.2019.123995.
  29. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  30. Hu, L., Hecht, D.S. and Gruner, G. (2010), "Carbon nanotube thin films: fabrication, properties, and applications", Chem. Rev., 110(10), 5790-5844. https://doi.org/10.1021/cr9002962.
  31. Hwang, S.F., Li, J.C. and Mao, C.P. (2012), "Perforation threshold energy of carbon fiber composite laminates", Struct. Eng. Mech., 43(2), 199-209. https://doi.org/10.12989/sem.2012.43.2.199.
  32. Kawde, A.N., Baig, N. and Sajid, M. (2016), "Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications", RSC Adv., 6(94), 91325-91340. https://doi.org/10.1039/C8NJ03721C.
  33. Kim, K., Lim, J., Kim, J. and Lim, Y. M. (2008), "Simulation of material failure behavior under different loading rates using molecular dynamics", Struct. Eng. Mech., 30(2), 177-190. https://doi:org/10.12989/sem.2008.30.2.177.
  34. Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: Fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng., 5(1), 109-120. https://doi:org/10.22060/AJME.2020.17450.5862.
  35. Li, Y., Lu, Y., Adelhelm, P., Titirici, M.M. and Hu, Y.S. (2019), "Intercalation chemistry of graphite: alkali metal ions and beyond", Chem. Soc. Rev., 48(17), 4655-4687. https://doi.org/10.1039/C9TA13913C.
  36. Liu, W., Wei, M., Ji, L., Zhang, Y., Song, Y., Liao, J. and Zhang, L. (2020), "Hollow carbon sphere based WS2 anode for high performance lithium and sodium ion batteries", Chem. Phys. Lett., 741, 137061. https://doi.org/10.1016/j.cplett.2019.137061.
  37. Mahboob, M. and Islam, M. Z. (2013), "Molecular dynamics simulations of defective CNT-polyethylene composite systems", Comput. Mater. Sci., 79, 223-229. https://doi.org/10.1016/j.commatsci.2013.05.042.
  38. Marcadon, V., Brown, D., Herve, E., Mele, P., Alberola, N.D. and Zaoui, A. (2013), "Confrontation between molecular dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites", Comput. Mater. Sci., 79, 495-505. https://doi.org/10.1016/j.commatsci.2013.07.002.
  39. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  40. Mohammadimehr, M., Rosta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.
  41. Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017a), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.
  42. Mohammadimehr, M., Navi, B.R. and Ghorbanpour Arani, A. (2017b), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magnetomechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507.
  43. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431.
  44. Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic microplate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9.
  45. Montazeri, A., Sadeghi, M., Naghdabadi, R. and Rafii-Tabar, H. (2011), "Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites", Phys. Lett. A, 375(14), 1588-1597. https://doi.org/10.1016/j.physleta.2011.02.065.
  46. Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.
  47. Mortazavi, B., Cuniberti, G. and Rabczuk, T. (2015), "Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study", Comput. Mater. Sci., 99, 285-289. https://doi.org/10.1016/j.commatsci.2014.12.036.
  48. Mukherjee, S., Alicandri, R. and Singh, C.V. (2020), "Strength of graphene with curvilinear grain boundaries", Carbon, 158, 808-817. https://doi.org/10.1016/j.carbon.2019.11.058.
  49. Naz, A., Kausar, A., Siddiq, M. and Choudhary, M.A. (2016), "Comparative review on structure, properties, fabrication techniques, and relevance of polymer nanocomposites reinforced with carbon nanotube and graphite fillers", Polym.-Plast. Technol. Eng., 55(2), 171-198. https://doi.org/10.1080/03602559.2015.1055504.
  50. Nikkar, A., Rouhi, S. and Ansari, R. (2017), "Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes", Struct. Eng. Mech., 64(3), 329-337. https://doi.org/10.12989/sem.2017.64.3.239.
  51. Papageorgiou, D.G., Kinloch, I.A. and Young, R.J. (2017), "Mechanical properties of graphene and graphene-based nanocomposites", Prog. Mater. Sci., 90, 75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004.
  52. Popov, V.N. (2004), "Carbon nanotubes: properties and application", Mater. Sci. Eng.: R: Report., 43(3), 61-102. https://doi.org/10.1016/j.mser.2003.10.001.
  53. Ramirez, S., Chan, K., Hernandez, R., Recinos, E., Hernandez, E., Salgado, R. and Balandin, A.A. (2017), "Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene-graphite fillers", Mater. Des., 118, 75-80. https://doi.org/10.1016/j.matdes.2017.01.018.
  54. Robertson, J. (2002), "Diamond-like amorphous carbon", Mater. Sci. Eng.: R: Report., 37(4-6), 129-281. https://doi.org/10.1016/S0927-796X(02)00005-0.
  55. Sakorikar, T., Vayalamkuzhi, P. and Jaiswal, M. (2020), "Geometry dependent performance limits of stretchable reduced graphene oxide interconnects: The role of wrinkles", Carbon, 158, 864-872. https://doi.org/10.1016/j.carbon.2019.11.070.
  56. Sari, A., Bicer, A. and Hekimoglu, G. (2019), "Effects of carbon nanotubes additive on thermal conductivity and thermal energy storage properties of a novel composite phase change material", J. Compos. Mater., 53(21), 2967-2980. https://doi.org/10.1177/0021998318808357.
  57. Shah, K.A. and Tali, B.A. (2016), "Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates", Mater. Sci. Semicond. Proc., 41, 67-82. https://doi.org/10.1016/j.mssp.2015.08.013.
  58. Song, X., Guo, H., Tao, J., Zhao, S., Han, X. and Liu, H. (2018), "Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants", Chem. Eng. Sci., 187, 406-414. https://doi.org/10.1016/j.ces.2018.05.009.
  59. Sugimoto, Y., Shimamoto, D., Imai, Y. and Hotta, Y. (2020). Simultaneous evaluation of tensile strength and interfacial shear strength of short length carbon fibers using fragmentation test. Carbon, 161, 83-88. https://doi.org/10.1016/j.carbon.2019.12.089.
  60. Virani, N.A., Davis, C., McKernan, P., Hauser, P., Hurst, R.E., Slaton, J. and Harrison, R.G. (2017), "Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer", Nanotechnol., 29(3), 035101. https://doi.org/10.1088/1361-6528/aa9c0c.
  61. Wang, J., Tan, H., Xiao, D., Navik, R., Goto, M. and Zhao, Y. (2020), "Preparation of waterborne graphene paste with high electrical conductivity", Chem. Phys. Lett., 741, 137098. https://doi.org/10.1016/j.cplett.2020.137098.
  62. Wang, W., Gan, N., Sun, Q., Wu, D., Gan, R., Zhang, M. and Li, H. (2019), "Study on the interaction of ertugliflozin with human serum albumin in vitro by multispectroscopic methods, molecular docking, and molecular dynamics simulation", Spectrochimica Acta Part A: Molecul. Biomol. Spectroscopy, 219, 83-90. https://doi.org/10.1016/j.saa.2019.04.047.
  63. Xu, J., Cao, Z., Zhang, Y., Yuan, Z., Lou, Z., Xu, X. and Wang, X. (2018), "A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism", Chemosph., 195, 351-364. https://doi.org/10.1016/j.chemosphere.2017.12.061.
  64. Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84(24), 5552. https://doi.org/10.1103/PhysRevLett.84.5552.
  65. Zaboli, M. and Raissi, H. (2018), "A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6,7] urils: Analysis of electronic structure", Spectrochimica Acta Part A: Molecul. Biomol. Spectroscopy, 188, 647-658. https://doi.org/10.1016/j.saa.2017.07.058.