DOI QR코드

DOI QR Code

Analytical and experimental modal analysis of model wind tunnel using microtremor excitation

  • Tuhta, Sertac (Ondokuz Mayis University, Faculty of Engineering, Department of Civil Engineering)
  • Received : 2020.01.17
  • Accepted : 2020.04.01
  • Published : 2021.06.25

Abstract

In this study was investigated of possibility using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Experimental Modal Analysis (EMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model wind tunnel. As known EMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model wind tunnel for dynamic characteristics was evaluated. 3D Finite element model of the building was evaluated for the model wind tunnel based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 2.5% are differences.

Keywords

References

  1. Aliev, F.A. and Larin, V.B. (1998), Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms, CRC Press.
  2. Alvin, K.F. and Park, K.C. (1994), "Second-order structural identification procedure via state-space-based system identification", AIAA J., 32(2), 397-406. https://doi.org/10.2514/3.11997.
  3. ANSI (S2.47-1990), Vibration of buildings-Guidelines for the measurement of vibrations and evaluation of their effects on buildings.
  4. ARTeMIS (1999), Extractor, Structural Vibration Solutions, Aalborg, Denmark.
  5. Balmes, E. (1997), "New results on the identification of normal modes from experimental complex modes", Mech. Syst. Sig. Processing, 11(2), 229-243. https://doi.org/10.1006/mssp.1996.0058.
  6. Bendat, J.S. (1998), Nonlinear Systems Techniques and Applications, Wiley.
  7. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fibers, 17(4), 505-519. https://doi.org/10.1080/15440478.2018.1503129.
  8. Brincker, R., Zhang, L. and Andersen, P. (2000), "Modal identification from ambient responses using frequency domain decomposition", Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, U.S.A., February.
  9. Cunha, A., Caetano, E., Magalhaes, F. and Moutinho, C. (2005), "From input-output to output-only modal identification of civil engineering structures", 1st International Operational Modal Analysis Conference (IOMAC), Copenhagen, Denmark, April.
  10. Friswell, M. and Mottershead, J.E. (1995), Finite Element Model Updating In Structural Dynamics, Springer Science-Business Media.
  11. Hirwani, C.K., Patil, R.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L. and Buragohain, M.K. (2016), "Experimental and numerical analysis of free vibration of delaminated curved panel", Aeros. Sci. Technol., 54, 353-370. https://doi.org/10.1016/j.ast.2016.05.009.
  12. Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", J. Aeros. Eng., 30(5), 04017045. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000756.
  13. HO, B. and Kalman, R.E. (1966), "Effective construction of linear state-variable models from input/output functions", at-Automatisierungstechnik, 14(1-12), 545-548. https://doi.org/10.1524/auto.1966.14.112.545.
  14. Ibrahim, S.R. (1977), "Random decrement technique for modal identification of structures", Journal of Spacecraft and Rockets, 14(11), 696-700. https://doi.org/10.2514/3.57251.
  15. Ibrahim, S.R. and Miculcik, E.C. (1977), "A method for the direct identification of vibration parameters from the free response", Shock Vib. Bull., 47(4), 183-194.
  16. Jacobsen, N.J., Andersen, P. and Brincker, R. (2006), "Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis", International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, September.
  17. Juang, J.N. (1994), Applied System Identification, Prentice Hall.
  18. Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm for modal parameter identification and model reduction", J. Guidance, Control Dyn., 8(5), 620-627. https://doi.org/10.2514/3.20031.
  19. Juang, J.N., Cooper, J.E. and Wright, J.R. (1988), "An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification", Control-Theory Advan. Technol., 4(1), 5-14.
  20. Juang, J.N., Phan, M., Horta, L.G. and Longman, R.W. (1993), "Identification of observer/kalman filter markov parameters-theory and experiments", J. Guidance Control Dyn., 16(2), 320-329. https://doi.org/10.2514/3.21006.
  21. Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng., 82(1), 35-45. http://dx.doi.org/10.1115/1.3662552.
  22. Kasimzade A.A. and Tuhta S. (2009), "Optimal estimation the building system characteristics for modal identification", 3 rd International Operational Modal Analysis Conference (IOMAC), Porto Novo, Ancona, Italy, May.
  23. Kasimzade, A.A. and Tuhta, S. (2017), "Application of OMA on the bench-scale earthquake simulator using micro tremor data", Struct. Eng. Mech., 61(2), 267-274. https://doi.org/10.12989/sem.2017.61.2.267.
  24. Kasimzade, A.A. and Tuhta, S. (2017), "OMA of model steel structure retrofitted with CFRP using earthquake simulator", Earthq. Struct., 12(6), 689-697. http://dx.doi.org/10.12989/eas.2017.12.6.689.
  25. Keerthana, M. and Harikrishna, P. (2017), "Wind tunnel investigations on aerodynamics of a 2: 1 rectangular section for various angles of wind incidence", Wind Struct., 25(3), 301-328. http://dx.doi.org/10.12989/was.2017.25.3.301.
  26. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded Tjoints", Wind Struct., 29(5), 361-369. http://dx.doi.org/10.12989/was.2019.29.5.361.
  27. Ljung, L. (1999), System Identification: Theory for the User, Prentice Hall.
  28. Lus, H., De Angelis, M., Betti, R. and Longman, R.W. (2003), "Constructing second-order models of mechanical systems from identified state space realizations. Part I: Theoretical discussions", J. Eng. Mech., 129(5), 477-488. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(477).
  29. Marwala, T. (2010), Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer Science-Business Media.
  30. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Advan. Nano Res., 7(6), 419-429. http://dx.doi.org/10.12989/anr.2019.7.6.419.
  31. Peeters, B. (2000), "System Identification and Damage Detection in Civil Engineering", Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.
  32. Phan, M. Q., Longman, R.W., Lee, S.C. and Lee, J.W. (2003), "System identification from multiple-trial data corrupted by non-repeating periodic disturbances", Int. J. Appl. Mathem. Comput. Sci., 13(2), 185-192.
  33. Quanser (2008), Position control and earthquake analysis. Quanser Shake Table II User Manual, Nr 632, Rev 3.50, Quanser Inc, Markham, Canada.
  34. Roeck, G.D. (2003), "The state-of-the-art of damage detection by vibration monitoring: the SIMCES experience", J. Struct. Control, 10(2), 127-134. https://doi.org/10.1002/stc.20.
  35. SAP2000 (1997), Integrated Finite Element Analysis and Design of Structures, Computers and Structures Inc, Berkeley, California, U.S.A.
  36. Sahoo, S.S., Hirwani, C.K., Panda, S.K. and Sen, D. (2018), "Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: An experimental validation", Scientia Iranica, 25(4), 2218-2232. https://dx.doi.org/10.24200/sci.2017.4346.
  37. Sahoo, S.S., Panda, S.K., Mahapatra, T.R. and Hirwani, C.K. (2019), "Numerical analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iran. J. Sci. Technol., Transactions Mech. Eng., 43(1), 41-56. https://doi.org/10.1007/s40997-017-0111-3.
  38. Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  39. Sauder, H. S. and Sarkar, P. P. (2017), "A 3-DOF forced vibration system for time-domain aeroelastic parameter identification", Wind and Structures, 24(5), 481-500. http://dx.doi.org/10.12989/was.2017.24.5.481.
  40. Sestieri, A. and Ibrahim, S.R. (1994), "Analysis of errors and approximations in the use of modal coordinates", J. Sound Vib., 177(2), 145-157. https://doi.org/10.1006/jsvi.1994.1424.
  41. Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018), "Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel-an experimental validation", Appl. Acoustic, 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013.
  42. Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(5), 1601-1619. https://doi.org/10.1177%2F0954406218774362.
  43. Tokuc, M.O. and Soyoz, S. (2018), "System identification and reliability assessment of an industrial chimney under wind loading", Wind and Structures, 27(5), 283-291. https://doi.org/10.12989/was.2018.27.5.283.
  44. Trifunac, M.D. (1972), "Comparisons between ambient and forced vibration experiments", Earthquake Engineering and Structural Dynamics, 1(2), 133-150. https://doi.org/10.1002/eqe.4290010203.
  45. Tseng, D.H., Longman, R.W. and Juang, J.N. (1994), "Identification of the structure of the damping matrix in second order mechanical systems", Spaceflight Mech., 167-190.
  46. Tseng, D.H., Longman, R.W. and Juang, J.N. (1994), "Identification of gyroscopic and nongyroscopic second order mechanical systems including repeated root problems", Spaceflight Mech., 145-165.
  47. Tuhta, S. (2019), "OMA of model chimney using Bench-Scale earthquake simulator", Earthq. Struct., 16(3), 321-327. https://doi.org/10.12989/eas.2019.16.3.321.
  48. Van Overschee, P. and De Moor, B.L. (1996), Subspace Identification for Linear Systems: Theory-Implementation-Applications, Springer Science -Business Media.
  49. Ventura, C.E. and Schuster, N.D. (1996), "Structural dynamic properties of a reinforced concrete high-rise building during construction", Canadian J. Civil Eng., 23(4), 950-972. https://doi.org/10.1139/l96-901.
  50. Wenzel, H. and Pichler, D. (2005), Ambient Vibration Monitoring, John Wiley & Sons.
  51. Zhang, J., Zhang, M., Li, Y. and Fang, C. (2019), "Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests", Wind Struct., 28(4), 203-213. http://dx.doi.org/10.12989/was.2019.28.4.203.