DOI QR코드

DOI QR Code

Protective effect of matcha green tea (Camellia sinensis) extract on high glucose- and oleic acid-induced hepatic inflammatory effect

고당 및 올레산으로 유도된 간세포에서의 염증반응에 대한 말차(Camellia sinensis) 추출물의 보호효과

  • Kim, Jong Min (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Uk (Division of Special Forest Resources, Department of Forest Bioresources, National Institute of Forest Science (NIFoS)) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Shin, Eun Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Moon, Jong Hyun (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Min Ji (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Hyo Lim (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Gil Han (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jeong, Hye Rin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Hyo Won (Division of Special Forest Resources, Department of Forest Bioresources, National Institute of Forest Science (NIFoS)) ;
  • Kim, Jong Cheol (Institute of Hadong Green Tea) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 김종민 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 이욱 (국립산림과학원 산림특용자원연구과) ;
  • 강진용 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 박선경 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 신은진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 문종현 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 김민지 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 이효림 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 김길한 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 정혜린 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 박효원 (국립산림과학원 산림특용자원연구과) ;
  • 김종철 ((재)하동녹차연구소) ;
  • 허호진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원)
  • Received : 2021.01.26
  • Accepted : 2021.03.29
  • Published : 2021.06.30

Abstract

To evaluate hepatoprotective effects, the antioxidant capacities of matcha green tea extract (Camellia sinenesis) were compared to those of green leaf tea and the anti-inflammatory activities in HepG2 cells were investigated. Evaluation of the total phenolic and total flavonoid content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and inhibitory effect on lipid peroxidation indicated that the aqueous extract of matcha green tea presented significant catechin content and antioxidant capacity compared to those of green leaf tea. In addition, the extract had considerable inhibitory effects on α-glucosidase, α-amylase, and advanced glycation end-products. The matcha green tea extract significantly increased cell viability and reduced reactive oxygen species in H2O2- and high-glucose-treated HepG2 cells. Furthermore, in response to oleic acid-induced HepG2 cell injury, treatment with matcha green tea aqueous extract inhibited lipid accumulation and regulated the expression of inflammatory proteins such as p-JNK, p-Akt, p-GSK-3β, caspase-3, COX-2, iNOS, and TNF-α. Matcha green tea could be used as a functional material to ameliorate hepatic lipid accumulation and inflammation.

본 연구는 가루녹차의 가공품인 말차를 이용하여 항산화 평가와 고당으로 유도된 간세포에서의 간세포 보호효과와 지방간 개선 활성을 평가하기 위해 진행되었다. 말차의 catechin 함량과 총 페놀성 화합물 및 총 플라보노이드 화합물의 함량은 잎 녹차보다 우수한 함량을 나타내었으며, 라디칼 소거활성과 지질과산화물 억제활성 역시 잎 녹차보다 우수한 것을 확인하였다. 또한, 항당뇨 활성을 나타내는 α-glucosidase, α-amylase 및 최종당화산물에 대한 우수한 억제활성을 확인하였다. In vitro 간세포 보호효과를 평가한 결과, 말차는 효과적으로 산화적 스트레스 및 고당으로 인한 활성산소 생성 억제활성과 간세포 생존율 나타내었다. 또한, oleic acid로 유도된 지방 축적에 대한 말차 추출물의 억제활성을 확인하였으며, 지방간으로 인한 염증반응에 대한 조절을 확인하였다. 이러한 연구 결과를 바탕으로 녹차의 가공품 중 하나인 말차는 가공 전 잎 녹차에 비해 우수한 카테킨 함량과 항산화 활성을 지니며, 탄수화물의 섭취를 억제해주는 소화효소의 활성을 억제하여 간세포의 지질축적을 억제하는 데 도움을 줄 수 있을 뿐만 아니라 염증 감소에 도움을 줄 수 있는 소재로서의 가능성을 확인하였다.

Keywords

Acknowledgement

본 연구는 농림축산식품부의 재원으로 농림식품기술기획평가원의 수출전략기술개발사업(617072-5)의 지원을 받아 수행된 연구결과입니다.

References

  1. Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Biactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 104: 1338-1344 (2007) https://doi.org/10.1016/j.foodchem.2007.01.047
  2. Abreu RV, Silva-Oliveira EM, Moraes MFD, Pereira GS, Moraes-Santos T. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol. Biochem. Behav. 99: 659-664 (2011) https://doi.org/10.1016/j.pbb.2011.06.010
  3. Angulo P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346: 1221-1231 (2002) https://doi.org/10.1056/NEJMra011775
  4. Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 8: 46-54 (2007) https://doi.org/10.1016/j.ifset.2006.06.001
  5. Bak MJ, Jun M, Jeong WS. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H2O2-treated HepG2 cells and CCl4-treated mice. Int. J. Mol. Sci. 13: 2314-2330 (2012) https://doi.org/10.3390/ijms13022314
  6. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  7. Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am. J. Physiol.-Endocrinol. Metab. 283: 2-19 (2002)
  8. Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr. 25: 79-99 (2006) https://doi.org/10.1080/07315724.2006.10719518
  9. Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agric. Food Chem. 61: 6069-6076 (2013) https://doi.org/10.1021/jf401171k
  10. Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y, Wang T. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients 9: 96 (2017) https://doi.org/10.3390/nu9020096
  11. Cremonini E, Oteiza PI. (-)-Epicatechin and its metabolites prevent palmitate-induced NADPH oxidase upregulation, oxidative stress and insulin resistance in HepG2 cells. Arch. Biochem. Biophys. 646: 55-63 (2018) https://doi.org/10.1016/j.abb.2018.03.027
  12. Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Daglia M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol. Nutr. Food Res. 60: 566-579 (2016) https://doi.org/10.1002/mnfr.201500567
  13. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 86: 557-566 (2009) https://doi.org/10.1189/jlb.1008647
  14. Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-α induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp. Biol. Med. 232: 614-621 (2007)
  15. Fujiyama Y, Hokari R, Miura S, Watanabe C, Komoto S, Oyama T, Kurihara C, Nagata H, Hibi T. Butter feeding enhances TNF-α production from macrophages and lymphocyte adherence in murine small intestinal microvessels. J. Gastroenterol. Hepatol. 22: 1838-1845 (2007) https://doi.org/10.1111/j.1440-1746.2007.04905.x
  16. Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, Li X, Liu G, Li X. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J. Cell. Mol. Med. 22: 3408-3422 (2018) https://doi.org/10.1111/jcmm.13617
  17. Gua J, Jin YS, Han W, Shim TH, Sa JH, Wang MH. Studies for component analysis, antioxidative activity and α-glucosidase inhibitory activity from Equisetum arvense. Appl. Biol. Chem. 49: 77-81 (2006)
  18. Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11: 1365-1402 (2010) https://doi.org/10.3390/ijms11041365
  19. Heo HJ, Cho HY, Hong B, Kim HK, Kim EK, Kim BG, Shin DH. Protective effect of 4', 5-dihydroxy-3', 6, 7-trimethoxyflavone from Artemisia asiatica against Aβ-induced oxidative stress in PC12 cells. Amyloid 8: 194-201 (2001) https://doi.org/10.3109/13506120109007362
  20. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338: 694-699 (2005) https://doi.org/10.1016/j.bbrc.2005.09.195
  21. Jeong CH, Choi GN, Kwak JH, Kim JH, Choi SG, Shim KH, Heo HJ. In vitro antioxidant activities of cocoa phenolics. Korean J. Food Preserv. 17: 100-106 (2010)
  22. Jeong EH, Jun DW, Cho YK, Choe YG, Ryu S, Lee SM, Jang EC. Regional prevalence of non-alcoholic fatty liver disease in Seoul and Gyeonggi-do, Korea. Clin. Mol. Hepatol. 19: 266-272 (2013) https://doi.org/10.3350/cmh.2013.19.3.266
  23. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS One 7: 47713 (2012)
  24. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  25. Kim JG, Jo SH, Ha KS, Kim SC, Kim YC, Apostolidis E, Kwon YI. Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complement. Altern. Med. 14: 272 (2014) https://doi.org/10.1186/1472-6882-14-272
  26. Kim JM, Lee U, Kang JY, Park SK, Kim JC, Heo HJ. Matcha improves metabolic imbalance-induced cognitive dysfunction. Oxidative Med. Cell. Longev. 2020:19 (2020)
  27. Kim JM, Park SK, Kang JY, Park SB, Yoo SK, Han HJ, Cho KH, Kim JC, Heo HJ. Green tea seed oil suppressed Aβ1-42-induced behavioral and cognitive deficit via the Aβ-related Akt pathway. Int. J. Mol. Sci. 20: 1865 (2019) https://doi.org/10.3390/ijms20081865
  28. Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 5: 19 (2011) https://doi.org/10.4103/0973-7847.79096
  29. Li T, Liu J, Zhang X, Ji G. Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of α-glucosidase inhibition. Biomed. Pharmacother. 61: 91-96 (2007) https://doi.org/10.1016/j.biopha.2006.11.002
  30. Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG, Chun YH, Choi BJ, Kim EC. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J. Pineal Res. 53: 225-237 (2012) https://doi.org/10.1111/j.1600-079X.2012.00991.x
  31. Liu Z, Li Q, Huang J, Liang Q, Yan Y, Lin H, Xiao W, Lin Y, Zhang S, Tan B, Luo G. Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells. Proteome Sci. 11: 32 (2013) https://doi.org/10.1186/1477-5956-11-32
  32. McPherson JD, Shilton BH, Walton DJ. Role of fructose in glycation and cross-linking of proteins. Biochemistry 27: 1901-1907 (1988) https://doi.org/10.1021/bi00406a016
  33. Mehra P, Koul A, Bansal DD. Studies on antioxidant role of (+)-catechin hydrate in high sucrose high fat diet induced oxidative stress. Am. J. Biomed. Sci. 5: 161-170 (2013) https://doi.org/10.5099/aj130200161
  34. Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F, Gambino R. Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology 56: 933-942 (2012) https://doi.org/10.1002/hep.25739
  35. Nam SM, Kang IJ, Shin MH. Anti-diabetic and anti-oxidative activities of extracts from Crataegus pinnatifida. J. East Asian Soc. Diet. Life 25: 270-277 (2015) https://doi.org/10.17495/easdl.2015.4.25.2.270
  36. Nass N, Bartling B, Santos AN, Scheubel RJ, Borgermann J, Silber RE, Simm A. Advanced glycation end products, diabetes and ageing. Z. Gerontol. Geriatr. 40: 349-356 (2007) https://doi.org/10.1007/s00391-007-0484-9
  37. Nyambe-Silavwe H, Villa-Rodriguez JA, Ifie I, Holmes M, Aydin E, Jensen JM, Williamson G. Inhibition of human α-amylase by dietary polyphenols. J. Funct. Food. 19: 723-732 (2015) https://doi.org/10.1016/j.jff.2015.10.003
  38. Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J. Food Drug Anal. 24: 627-634 (2016) https://doi.org/10.1016/j.jfda.2016.03.003
  39. Ortiz-Lopez L, Marquez-Valadez B, Gomez-Sanchez A, Silva-Lucero MDC, Torres-Perez M, Tellez-Ballesteros RI, Ichwan M, MerazRios MA, Kempermann G, Ramirez-Rodriguez GB. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322: 208-220 (2016) https://doi.org/10.1016/j.neuroscience.2016.02.040
  40. Park CS. Component and quality characteristics of powdered green tea cultivated in Hwagae area. Korean J. Food Preserv. 12: 36-42 (2005)
  41. Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, Sung IK, Sohn CI, Keum DK, Kim BI. Prevalence and risk factors of nonalcoholic fatty liver disease among Korean adults. J. Gastroenterol. Hepatol. 21: 138-143 (2006) https://doi.org/10.1111/j.1440-1746.2005.04086.x
  42. Rutter K, Sell DR, Fraser N, Obrenovich M, Zito M, Starke-Reed P, Monnier VM. Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice. Int. J. Vitam. Nutr. Res. 73: 453-460 (2003) https://doi.org/10.1024/0300-9831.73.6.453
  43. Sakurai K, Shen C, Ezaki Y, Inamura N, Fukushima Y, Masuoka N, Hisatsune T. Effects of matcha green tea powder on cognitive functions of community-dwelling elderly individuals. Nutrients 12: 3639 (2020) https://doi.org/10.3390/nu12123639
  44. Sampath C, Rashid MR, Sang S, Ahmedna M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed. Pharmacother. 87: 73-81 (2017) https://doi.org/10.1016/j.biopha.2016.12.082
  45. Sang S, Shao X, Bai N, Lo CY, Yang CS, Ho CT. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chem. Res. Toxicol. 20: 1862-1870 (2007) https://doi.org/10.1021/tx700190s
  46. Santamarina AB, Oliveira JL, Silva FP, Carnier J, Mennitti LV, Santana AA, Oyama LM. Green tea extract rich in epigallocatechin3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet. PLoS One 10: 0141227 (2015)
  47. Sato D. Inhibition of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rats by green tea. Int. J. Urol. 6: 93-99 (1999) https://doi.org/10.1046/j.1442-2042.1999.06239.x
  48. Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 135: 672-675 (2012) https://doi.org/10.1016/j.foodchem.2012.04.143
  49. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 44: 129-146 (2001) https://doi.org/10.1007/s001250051591
  50. Tang W, Li S, Liu Y, Huang MT, Ho CT. Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms. J. Funct. Food. 5: 1784-1793 (2013) https://doi.org/10.1016/j.jff.2013.08.007
  51. Xia HM, Wang J, Xie XJ, Xu LJ, Tang SQ. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats. Int. J. Mol. Med. 44: 1523-1530 (2019)
  52. Xu JZ, Yeung SYV, Chang Q, Huang Y, Chen ZY. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br. J. Nutr. 91: 873-881 (2004) https://doi.org/10.1079/BJN20041132
  53. Zielinski AAF, Haminiuk CWI, Alberti A, Nogueira A, Demiate IM, Granato D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 60: 246-254 (2014) https://doi.org/10.1016/j.foodres.2013.09.010
  54. Zhu J, Cai R, Tan Y, Wu X, Wen Q, Liu Z, Ouyang S, Yin Z, Yang H. Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. J. Funct. Food. 64: 103621 (2020) https://doi.org/10.1016/j.jff.2019.103621