DOI QR코드

DOI QR Code

Study on the Mechanism of Manifestation of Ecological Toxicity in Heavy Metal Contaminated Soil Using the Sensing System of Earthworm Movement

지렁이 움직임 감지 시스템을 이용한 중금속 오염 토양의 생태독성 발현 메커니즘에 대한 연구

  • Lee, Woo-Chun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Lee, Sang-Hun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Jeon, Ji-Hun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU))
  • 이우춘 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 이상훈 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 전지훈 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 이상우 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 김순오 (경상국립대학교 지질과학과 및 기초과학연구소(RINS))
  • Received : 2021.06.12
  • Accepted : 2021.06.22
  • Published : 2021.06.28

Abstract

Natural soil was artificially contaminated with heavy metals (Cd, Pb, and Zn), and the movement of earthworm was characterized in real time using the ViSSET system composed of vibration sensor and the other components. The manifestation mechanism of ecological toxicity of heavy metals was interpreted based on the accumulative frequency of earthworm movement obtained from the real-time monitoring as well as the conventional indices of earthworm behavior, such as the change in body weight before and after tests and biocumulative concentrations of each contaminant. The results showed the difference in the earthworm movement according to the species of heavy metal contaminants. In the case of Cd, the earthworm movement was decreased with increasing its concentration and then tended to be increased. The activity of earthworm was severely increased with increasing Pb concentration, but the movement of earthworm was gradually decreased with increasing Zn concentration. The body weight of earthworm was proved to be greatly decreased in the Zn-contaminated soil, but it was similarly decreased in Cd- and Pb-contaminated soils. The bioaccumulation factor (BAF) was higher in the sequence of Cd > Zn > Pb, and particularly the biocumulative concentration of Pb did not show a clear tendency according to the Pb concentrations in soil. It was speculated that Cd is accumulated as a metallothionein-bound form in the interior of earthworm for a long time. In particular, Cd has a bad influence on the earthworm through the critical effect at its higher concentrations. Pb was likely to reveal its ecotoxicity via skin irritation or injury of sensory organs rather than ingestion pathway. The ecotoxicity of Zn seemed to be manifested by damaging the cell membranes of digestive organs or inordinately activating metabolism. Based on the results of real-time monitoring of earthworm movement, the half maximal effective concentration (EC50) of Pb was estimated to be 751.2 mg/kg, and it was similar to previously-reported ones. The study confirmed that if the conventional indices of earthworm behavior are combined with the results of newly-proposed method, the mechanism of toxicity manifestation of heavy metal contaminants in soils is more clearly interpreted.

배경토양에 카드뮴(Cd), 납(Pb), 아연(Zn) 등의 중금속 오염물질을 인위적으로 오염시킨 후 진동센서 등으로 구성된 시스템(ViSSET)을 이용하여 지렁이 움직임 특성을 실시간으로 모니터링하였다. 이로부터 얻어진 지렁이 움직임의 누적 횟수와 전통적인 지렁이 행태지표(실험 전후의 체중 변화, 생체축적농도) 등을 이용하여 중금속 오염물질의 토양 내 생태독성 발현 기작을 규명하였다. 중금속별 농도 증가에 따른 지렁이 움직임을 살펴보면, Cd는 농도가 증가함에 따라 지렁이 움직임은 감소하다가 증가하는 경향을 보였고, Pb는 농도 증가에 따라 지렁이 움직임이 급증하였으며, Zn의 경우는 농도가 증가함에 따라 지렁이 움직임은 지속적으로 감소하는 것으로 나타났다. 지렁이의 체중은 Zn 오염 토양에서 가장 크게 감소하였으며, Cd와 Pb에서는 지렁이 체중 변화가 유사한 것으로 조사되었다. 생물축적농도는 Cd, Zn, Pb의 순으로 높게 조사되었고, 특히 Pb의 경우에는 토양 내 농도에 따른 생체축적농도의 변화가 뚜렷하게 나타나지 않았다. Cd는 metallothionein-bound 형태로 결합되어 지렁이 생체 내에 장기간 축적되며, 특히 고농도에서는 임계효과(critical effect)에 의해 지렁이 움직임에 악영향을 주는 것으로 판단된다. Pb는 섭취에 의하여 생태독성이 발현되는 것이 아니고 피부를 자극시키거나 감각기관을 손상시킴으로서 독성을 발현시키는 것으로 생각된다. Zn은 소화기관의 세포막을 손상시키거나 물질대사를 과도하게 증가시킴으로써 지렁이 움직임과 체중이 감소하는 것과 같은 생태독성을 발현시킨다. 지렁이 움직임에 대한 실시간 모니터링 결과를 분석하여 도출한 Pb의 50% 최대 영향농도(half maximal effective concentration, EC50)는 751.2 mg/kg로 기존 연구와 유사한 것으로 나타났다. 본 연구를 통하여 기존에 이용되어온 지렁이 행태 지표와 새롭게 제시한 지렁이의 움직임을 실시간으로 모니터링하여 얻어진 결과를 통합적으로 해석함으로써 중금속 오염물질의 생태독성 발현 기작을 규명하는 것이 효과적임을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2018년도 교육부 국립대학육성사업 기초·보호 학문분야 학문후속세대 양성사업 연구비 지원에 의 하여 수행되었다(2018-0970).

References

  1. Alloway, B.J. (1995) Heavy Metals in Soils, Blackie, Wiley, New York, p.38-57.
  2. Brulle, F., Mitta, G., Leroux, R., Lemiere, S., Lepretre, A. and Vandenbulcke, F. (2007) The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: A trade-off mechanism?. Comp. Biochem. Physiol. C Toxicol. Pharmacol., v.144, p.334-341, doi: 10.1016/j.cbpc.2006.10.007.
  3. Chen, C., Wang, Y., Qian, Y., Zhao, X. and Wang, Q. (2015) The synergistic toxicity of the multiple pollutant mixtures: implications for risk assessment in the terrestrial environment. Environ. Int., v.77, p.95-105. doi: 10.1016/j.envint.2015.01.014.
  4. Choi, S., Pak, S.J., Lee, P. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. environ. geol., v.37, p.1-19.
  5. Conder, J.M., Seals, L.D. and Lanno, R.P. (2002) Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida. Chemosphere, v.49, p.1-7. doi: 10.1016/s0045-6535(02)00192-3.
  6. Davies, B.E. (1983) Heavy metal contamination from base metal mining and smelting: implications for man and his environment. In I. Thornton (Ed.), Applied environmental geochemistry, pp.425-460). London: Academic.
  7. Davies, B.E. and Jones, L.H.P. (1988) Micronutrients and toxic elements in Russell's Soil Conditions and Plant Growth. A. Wild, Ed., pp.781-814, JohnWiley & Sons; Interscience, New York, NY, USA, 11th edition.
  8. EPA (Environmental Protection Agency) (2012) Ecological Effects Test Guidelines, OCSPP 850.3100: Earthworm Subchronic Toxicity Test. Washington, D.C., USA.
  9. Frankenbach, S., Scheffczyk, A., Jansch, S. and Rombke, J. (2014) Duration of the standard earthworm avoidance test: Are 48 h necessary?. Appl. Soil Ecol., v.83, p.238-246. doi: 10.1016/j.apsoil.2014.04.006.
  10. Gao, M., Qi, Y., Song, W. and Zhou, Q. (2015) Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida). Chemosphere, v.139, p.229-234. doi: 10.1016/j.chemosphere.2015.06.059.
  11. Greany, K.M. (2005) An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. M.S. thesis, School of Life Sciences Heriot-Watt University, Edinburgh, Scotland, 2005.
  12. Hirano, T. and Tamae. K. (2011) Earthworms and Soil Pollutants. Sensors, v.11, p.11157-11167. doi: 10.3390/s111211157.
  13. Irizar, A., Rodriguez, M.P., Izquierdo, A., Cancio, I., Marigomez, I. and Soto, M. (2015) Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests. Arch. Environ. Contam. Toxicol., v.68, p.181-192. doi: 10.1007/s00244-014-0060-4.
  14. ISO (International Organization for Standardization) (2008) Soil Quality-Avoidance Test for Evaluating the Quality of Soils and the Toxicity of Chemicals. Test with Earthworms (Eisenia fetida/andrei). ISO 17512-1, Geneva, Switzerland.
  15. ISO (International Organization for Standardization) (2012a) Soil Quality-Effects of Pollutants on Earthworms. Part 1: Determination of acute toxicity to Eisenia fetida/Eisenia andrei. ISO 11268-1, Geneva, Switzerland.
  16. ISO (International Organization for Standardization) (2012b) Mechanical vibration of rotating and reciprocating machinery - Requirements for instruments for measuring vibration severity. ISO 2954, Geneva, Switzerland.
  17. Klaassen, C.D., Liu, J. and Diwan, B.A. (2009) Metallothionein Protection of Cadmium Toxicity. Toxicol. Appl. Pharmacol., v.238, p.215-220. doi: 10.1016/j.taap.2009.03.026.
  18. Lee, W., Lee, S., Jeon, J., Jung, H. and Kim, S. (2019) A novel method for real-time monitoring of soil ecological toxicity-Detection of earthworm motion using a vibration sensor. Ecotoxicol. Environ. Saf., v.185, p.109677. doi: 10.1016/j.ecoenv.2019.109677.
  19. Lu, A., Zhang, S. and Shan, X. (2005) Time effect on the fractionation of heavy metals in soils. Geoderma, v.125, p.225-234. doi: 10.1016/j.geoderma.2004.08.002.
  20. Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J. Sweetman, A.J., Jenkins, A., Ferrier, R.C., Li, H., Luo, W. and Wang, T. (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ. Int., v.77, p.5-15. doi: 10.1016/j.envint.2014.12.010.
  21. Lukkari, T. and Haimi, J. (2005) Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicol. Environ. Saf., v.62, p.35-41. doi: 10.1016/j.ecoenv.2004.11.012.
  22. McLaughlin, M.J., Hamon, R.E., McLaren, R.G., Speir, T.W. and Rogers, S.L. (2000) Review: a biovailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian J. Soil Res., v.38, p.1037-1086. doi: 10.1071/SR99128.
  23. MOE (2007) The Korean Standard Test (KST) Methods for Soils. Korean Ministry of Environment, Gwachun, South Korea.
  24. OECD (1984) OECD Guideline for Testing of Chemicals No. 207, Earthworm Acute Toxicity. OECD, Paris, France.
  25. Ogundiran, M.B. and Osibanjo, O. (2009) Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chem. Speciat. Bioavailab., v.21, p.59-69. doi: 10.3184/095422909X449481.
  26. Owojori, O.J. and Reinecke. A.J. (2009) Avoidance behaviour of two eco-physiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) in natural and artificial saline soils. Chemosphere, v.75, p.279-283. doi: 10.1016/j.chemosphere.2008.12.051.
  27. Park, J. and Choi, K. (2013) Risk assessment of soil, water and crops in abandoned Geumryeong mine in South Korea. J. Geochem. Explor., v.128, p.117-123. doi: 10.1016/j.gexplo.2013.02.004.
  28. Raty, M. and Huhta, V. (2003) Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biol. Fertil. Soils, v.38, p.52-58. doi: 10.1007/s00374-003-0614-5.
  29. Rosen, C.J. (2002) Lead in the home garden and urban soil environment. Communication and Educational Technology Services, University of Minnesota Extension, 2002.
  30. Sanchez-Hernandez, J.C., Rios, J.M., Attademo, A.M., Malcevschi, A. and Caresa, X.A. (2019) Assessing biochar impact on earthworms: Implications for soil quality promotion. J. Hazard. Mater., v.366, p582-591. doi: 10.1016/j.jhazmat.2018.12.032.
  31. Sarmah, R., Kanta, S., hagabati, B., Dutta, R., Nath, D., Pokhrel, H., Mudoi, L.P., Sarmah, N., Sarma, J., Ahmed, A.M., Nath, R.J., Ingtipi, L. and Kuotsu, K. (2020) Toxicity of a synthetic phenolic antioxidant, butyl hydroxytoluene (BHT), in vertebrate model zebrafish embryo (Danio rerio). Aquaculture Research, v.51, p.3839-3846. doi: 10.1111/are.14732.
  32. Saxe, J.K., Impellitteri, C.A., Peijnenburg, W.J. and Allen, H.E. (2001) Novel model describing trace metal concentrations in the earthworm. Eisenia andrei. Environ. Sci. Technol., v.35, p.4522-4529. doi: 10.1021/es0109038.
  33. Syed, Z., Alexander, D., Ali, J., Unrine, J. and Shoults-Wilson, W.A. (2017) Chemosensory cues alter earthworm (Eisenia fetida) avoidance of lead-contaminated soil. Environ. Toxicol. Chem., v.36, p.999-1004. doi: 10.1002/etc.3619.
  34. Uwizeyimana, H., Wang, M., Chen, W. and Khan, K. (2017) The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ. Toxicol. Pharmacol., v.55, p.20-29. doi: 10.1016/j.etap.2017.08.001.
  35. de la Vega, A.C.S., Cruz-Alcalde, A., Mazon, C.S., Marti, C.B. and Diaz-Cruz, M.S. (2021) Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies. Water, v.13, p.55. doi: 10.3390/w13010055.
  36. Vijver, M.G., Wolterbeek, H.T., Vink, J.P. and van Gestel, C.A. (2005) Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Sci. Total Environ., v.340, p.271-280. doi: 10.1016/j.scitotenv.2004.12.018.
  37. Wang, Y., Wu, Y., Cavanagh, J., Yiming, A., Wang, X., Gao, W., Matthew, C., Qiu, J. and Li, Y. (2018) Toxicity of arsenite to earthworms and subsequent effects on soil properties. Soil Biol. Biochem., v,117, p.36-47. doi: 10.1016/j.soilbio.2017.11.007.
  38. Wcislo, E., Bronder, J., Bubak, A., Rodriguez-Valdes, E. and Gallego, J.L.R. (2016) Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environ. Int., v.94, p.436-448. doi: 10.1016/j.envint.2016.05.028.
  39. Weggler, K., McLaughlin, M.J. and Graham, R.D. (2004) Effect of Chloride in Soil Solution on the Plant Availability of Biosolid-Borne Cadmium. J. Environ. Qual., v.33, p.496-504. doi: 10.2134/jeq2004.4960.
  40. Wijayawardena, M.A.A., Megharaj, M. and Naidu, R. (2017) Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. J. Soils and Sediment., v.17, p.1064-1072. doi: 10.1007/s11368-016-1605-0.
  41. Wuana, R.A. and Okieimen, F.E. (2011) Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network, v.2011, p.1-20. doi: 10.5402/2011/402647.
  42. Yang, G., Chen, C., Yu, Y., Zhao, H., Wang, W., Wang, Y., Cai, L., He, Y. and Wang, X. (2018) Combined effects of four pesticides and heavy metal chromium (VI) on the earthworm using avoidance behavior as an endpoint. Ecotoxicol. Environ. Saf., v.157, p.191-200. doi: 10.1016/j.ecoenv.2018.03.067.
  43. Yoon, J.K., Kim, D.H., Kim, T.S., Park, J.G., Chung, I.R., Kim, J.H. and Kim, H. (2009) Evaluation on natural background of the soil heavy metals in Korea. J. Soil Groundwater Env., v.14, p.32-39.
  44. Yu, S. and Lanno, R.P. (2010) Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei) Environ. Toxicol. Chem., v.29, p.1568-1574. doi: 10.1002/etc.183.
  45. Zahran, S., Mielke, H.W., McElmurry, S.P., Filippelli, G.M., Laidlaw, M.A.S. and Taylor, M.P. (2013) Determining the relative importance of soil sample locations to predict risk of child lead exposure. Environ. Int., v.60, p.7-14. doi: 10.1016/j.envint.2013.07.004.