Acknowledgement
본 연구는 2018년도 교육부 국립대학육성사업 기초·보호 학문분야 학문후속세대 양성사업 연구비 지원에 의 하여 수행되었다(2018-0970).
References
- Alloway, B.J. (1995) Heavy Metals in Soils, Blackie, Wiley, New York, p.38-57.
- Brulle, F., Mitta, G., Leroux, R., Lemiere, S., Lepretre, A. and Vandenbulcke, F. (2007) The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: A trade-off mechanism?. Comp. Biochem. Physiol. C Toxicol. Pharmacol., v.144, p.334-341, doi: 10.1016/j.cbpc.2006.10.007.
- Chen, C., Wang, Y., Qian, Y., Zhao, X. and Wang, Q. (2015) The synergistic toxicity of the multiple pollutant mixtures: implications for risk assessment in the terrestrial environment. Environ. Int., v.77, p.95-105. doi: 10.1016/j.envint.2015.01.014.
- Choi, S., Pak, S.J., Lee, P. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. environ. geol., v.37, p.1-19.
- Conder, J.M., Seals, L.D. and Lanno, R.P. (2002) Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida. Chemosphere, v.49, p.1-7. doi: 10.1016/s0045-6535(02)00192-3.
- Davies, B.E. (1983) Heavy metal contamination from base metal mining and smelting: implications for man and his environment. In I. Thornton (Ed.), Applied environmental geochemistry, pp.425-460). London: Academic.
- Davies, B.E. and Jones, L.H.P. (1988) Micronutrients and toxic elements in Russell's Soil Conditions and Plant Growth. A. Wild, Ed., pp.781-814, JohnWiley & Sons; Interscience, New York, NY, USA, 11th edition.
- EPA (Environmental Protection Agency) (2012) Ecological Effects Test Guidelines, OCSPP 850.3100: Earthworm Subchronic Toxicity Test. Washington, D.C., USA.
- Frankenbach, S., Scheffczyk, A., Jansch, S. and Rombke, J. (2014) Duration of the standard earthworm avoidance test: Are 48 h necessary?. Appl. Soil Ecol., v.83, p.238-246. doi: 10.1016/j.apsoil.2014.04.006.
- Gao, M., Qi, Y., Song, W. and Zhou, Q. (2015) Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida). Chemosphere, v.139, p.229-234. doi: 10.1016/j.chemosphere.2015.06.059.
- Greany, K.M. (2005) An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. M.S. thesis, School of Life Sciences Heriot-Watt University, Edinburgh, Scotland, 2005.
- Hirano, T. and Tamae. K. (2011) Earthworms and Soil Pollutants. Sensors, v.11, p.11157-11167. doi: 10.3390/s111211157.
- Irizar, A., Rodriguez, M.P., Izquierdo, A., Cancio, I., Marigomez, I. and Soto, M. (2015) Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests. Arch. Environ. Contam. Toxicol., v.68, p.181-192. doi: 10.1007/s00244-014-0060-4.
- ISO (International Organization for Standardization) (2008) Soil Quality-Avoidance Test for Evaluating the Quality of Soils and the Toxicity of Chemicals. Test with Earthworms (Eisenia fetida/andrei). ISO 17512-1, Geneva, Switzerland.
- ISO (International Organization for Standardization) (2012a) Soil Quality-Effects of Pollutants on Earthworms. Part 1: Determination of acute toxicity to Eisenia fetida/Eisenia andrei. ISO 11268-1, Geneva, Switzerland.
- ISO (International Organization for Standardization) (2012b) Mechanical vibration of rotating and reciprocating machinery - Requirements for instruments for measuring vibration severity. ISO 2954, Geneva, Switzerland.
- Klaassen, C.D., Liu, J. and Diwan, B.A. (2009) Metallothionein Protection of Cadmium Toxicity. Toxicol. Appl. Pharmacol., v.238, p.215-220. doi: 10.1016/j.taap.2009.03.026.
- Lee, W., Lee, S., Jeon, J., Jung, H. and Kim, S. (2019) A novel method for real-time monitoring of soil ecological toxicity-Detection of earthworm motion using a vibration sensor. Ecotoxicol. Environ. Saf., v.185, p.109677. doi: 10.1016/j.ecoenv.2019.109677.
- Lu, A., Zhang, S. and Shan, X. (2005) Time effect on the fractionation of heavy metals in soils. Geoderma, v.125, p.225-234. doi: 10.1016/j.geoderma.2004.08.002.
- Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J. Sweetman, A.J., Jenkins, A., Ferrier, R.C., Li, H., Luo, W. and Wang, T. (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ. Int., v.77, p.5-15. doi: 10.1016/j.envint.2014.12.010.
- Lukkari, T. and Haimi, J. (2005) Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicol. Environ. Saf., v.62, p.35-41. doi: 10.1016/j.ecoenv.2004.11.012.
- McLaughlin, M.J., Hamon, R.E., McLaren, R.G., Speir, T.W. and Rogers, S.L. (2000) Review: a biovailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian J. Soil Res., v.38, p.1037-1086. doi: 10.1071/SR99128.
- MOE (2007) The Korean Standard Test (KST) Methods for Soils. Korean Ministry of Environment, Gwachun, South Korea.
- OECD (1984) OECD Guideline for Testing of Chemicals No. 207, Earthworm Acute Toxicity. OECD, Paris, France.
- Ogundiran, M.B. and Osibanjo, O. (2009) Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chem. Speciat. Bioavailab., v.21, p.59-69. doi: 10.3184/095422909X449481.
- Owojori, O.J. and Reinecke. A.J. (2009) Avoidance behaviour of two eco-physiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) in natural and artificial saline soils. Chemosphere, v.75, p.279-283. doi: 10.1016/j.chemosphere.2008.12.051.
- Park, J. and Choi, K. (2013) Risk assessment of soil, water and crops in abandoned Geumryeong mine in South Korea. J. Geochem. Explor., v.128, p.117-123. doi: 10.1016/j.gexplo.2013.02.004.
- Raty, M. and Huhta, V. (2003) Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biol. Fertil. Soils, v.38, p.52-58. doi: 10.1007/s00374-003-0614-5.
- Rosen, C.J. (2002) Lead in the home garden and urban soil environment. Communication and Educational Technology Services, University of Minnesota Extension, 2002.
- Sanchez-Hernandez, J.C., Rios, J.M., Attademo, A.M., Malcevschi, A. and Caresa, X.A. (2019) Assessing biochar impact on earthworms: Implications for soil quality promotion. J. Hazard. Mater., v.366, p582-591. doi: 10.1016/j.jhazmat.2018.12.032.
- Sarmah, R., Kanta, S., hagabati, B., Dutta, R., Nath, D., Pokhrel, H., Mudoi, L.P., Sarmah, N., Sarma, J., Ahmed, A.M., Nath, R.J., Ingtipi, L. and Kuotsu, K. (2020) Toxicity of a synthetic phenolic antioxidant, butyl hydroxytoluene (BHT), in vertebrate model zebrafish embryo (Danio rerio). Aquaculture Research, v.51, p.3839-3846. doi: 10.1111/are.14732.
- Saxe, J.K., Impellitteri, C.A., Peijnenburg, W.J. and Allen, H.E. (2001) Novel model describing trace metal concentrations in the earthworm. Eisenia andrei. Environ. Sci. Technol., v.35, p.4522-4529. doi: 10.1021/es0109038.
- Syed, Z., Alexander, D., Ali, J., Unrine, J. and Shoults-Wilson, W.A. (2017) Chemosensory cues alter earthworm (Eisenia fetida) avoidance of lead-contaminated soil. Environ. Toxicol. Chem., v.36, p.999-1004. doi: 10.1002/etc.3619.
- Uwizeyimana, H., Wang, M., Chen, W. and Khan, K. (2017) The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ. Toxicol. Pharmacol., v.55, p.20-29. doi: 10.1016/j.etap.2017.08.001.
- de la Vega, A.C.S., Cruz-Alcalde, A., Mazon, C.S., Marti, C.B. and Diaz-Cruz, M.S. (2021) Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies. Water, v.13, p.55. doi: 10.3390/w13010055.
- Vijver, M.G., Wolterbeek, H.T., Vink, J.P. and van Gestel, C.A. (2005) Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Sci. Total Environ., v.340, p.271-280. doi: 10.1016/j.scitotenv.2004.12.018.
- Wang, Y., Wu, Y., Cavanagh, J., Yiming, A., Wang, X., Gao, W., Matthew, C., Qiu, J. and Li, Y. (2018) Toxicity of arsenite to earthworms and subsequent effects on soil properties. Soil Biol. Biochem., v,117, p.36-47. doi: 10.1016/j.soilbio.2017.11.007.
- Wcislo, E., Bronder, J., Bubak, A., Rodriguez-Valdes, E. and Gallego, J.L.R. (2016) Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environ. Int., v.94, p.436-448. doi: 10.1016/j.envint.2016.05.028.
- Weggler, K., McLaughlin, M.J. and Graham, R.D. (2004) Effect of Chloride in Soil Solution on the Plant Availability of Biosolid-Borne Cadmium. J. Environ. Qual., v.33, p.496-504. doi: 10.2134/jeq2004.4960.
- Wijayawardena, M.A.A., Megharaj, M. and Naidu, R. (2017) Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. J. Soils and Sediment., v.17, p.1064-1072. doi: 10.1007/s11368-016-1605-0.
- Wuana, R.A. and Okieimen, F.E. (2011) Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network, v.2011, p.1-20. doi: 10.5402/2011/402647.
- Yang, G., Chen, C., Yu, Y., Zhao, H., Wang, W., Wang, Y., Cai, L., He, Y. and Wang, X. (2018) Combined effects of four pesticides and heavy metal chromium (VI) on the earthworm using avoidance behavior as an endpoint. Ecotoxicol. Environ. Saf., v.157, p.191-200. doi: 10.1016/j.ecoenv.2018.03.067.
- Yoon, J.K., Kim, D.H., Kim, T.S., Park, J.G., Chung, I.R., Kim, J.H. and Kim, H. (2009) Evaluation on natural background of the soil heavy metals in Korea. J. Soil Groundwater Env., v.14, p.32-39.
- Yu, S. and Lanno, R.P. (2010) Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei) Environ. Toxicol. Chem., v.29, p.1568-1574. doi: 10.1002/etc.183.
- Zahran, S., Mielke, H.W., McElmurry, S.P., Filippelli, G.M., Laidlaw, M.A.S. and Taylor, M.P. (2013) Determining the relative importance of soil sample locations to predict risk of child lead exposure. Environ. Int., v.60, p.7-14. doi: 10.1016/j.envint.2013.07.004.