INTRODUCTION

Posttraumatic pseudoaneurysm is caused by blunt, penetrating, or surgical trauma. Although its incidence is low, pseudoaneurysm rupture can cause a life-threatening, massive hemorrhage. A 48-year-old man visited our emergency center due to a fall-down accident. Three-dimensional computed tomography (CT) showed a comminuted zygomaticomaxillary complex fracture of the left face. After open reduction and internal fixation, the surgical wound healed without any complications. However, the patient was readmitted 10 days after surgery due to pus-like discharge from the wound. Contrast-enhanced CT to find the abscess unexpectedly revealed a pseudoaneurysm in the left retromaxillary area. Massive oral bleeding occurred on the night of re-hospitalization and emergency surgery was done. The bleeding site was identified as a pseudo-aneurysmal rupture of the posterior superior alveolar artery in the retromaxillary area. Hemostasis was achieved by packing Vaseline gauze in the maxillary sinus using an endoscope. Delayed rupture and massive bleeding of posttraumatic retromaxillary pseudoaneurysm after a zygomaticomaxillary fracture is a low-probability, but high-impact event. Therefore, additional contrast-enhanced CT should be considered to evaluate the possibility of a posttraumatic pseudoaneurysm in cases of severe comminuted zygomaticomaxillary fracture.

Abbreviations: CT, computed tomography; ORIF, open reduction and internal fixation.

Keywords: Face / Pseudoaneurysm / Rupture
Internal fixation (ORIF) was performed for the left zygomatico-maxillary fracture under general anesthesia. The patient was discharged without any complications. However, the patient was readmitted only 10 days after surgery due to pus-like discharge from the previous wound. The patient also complained of left cheek pain. Contrast-enhanced facial CT to evaluate the abscess and inflammation of the left cheek unexpectedly revealed a pseudoaneurysm in the left retromaxillary area (Fig. 2). The patient was scheduled for angi-embolization with surgical exploration as a backup plan for the treatment of the pseudoaneurysm on the following day. However, massive oral and nasal bleeding occurred on the night of re-hospitalization. At the bedside, the previous gingivobuccal incision site was reopened and temporary hemostasis was achieved by manual compression on the posterior maxillary wall with gauze packing through the gap of the maxillary anterior wall. An emergency operation under general anesthesia was performed within a few minutes. An endoscopic approach was used to determine the bleeding focus more precisely. The bleeding site was identified as a pseudo-aneurysmal rupture of the posterior superior alveolar artery in the left retromaxillary area (Fig. 3). Electrocauterization and ligation were not enough to achieve hemostasis at the bleeding site. Vaseline gauze packing was therefore performed at the bleeding site for compression in the maxillary sinus. The hemoglobin level of the patient decreased by about 2.0 g/dL in 4 hours, necessitating urgent blood transfusion. The postoperative contrast-enhanced facial CT showed a significant decrease in the pseudoaneurysm size (Fig. 4). No additional active bleeding occurred at the operation site during 6 months of postoperative follow-up (Fig. 5).

DISCUSSION

An aneurysm is an irreversible extension of an artery. A true aneurysm is defined as extension of the entire artery wall, which
is composed of the tunica intima, media, and adventitia, whereas a false aneurysm (or pseudoaneurysm) occurs when only part of the artery wall and surrounding tissues are expanded.

Posttraumatic facial aneurysm is caused by incomplete tearing of the vascular wall and blood flow into the surrounding tissues through the side. If leakage continues through the torn blood vessel, it gradually increases in size and eventually becomes a pseudoaneurysm [3]. Additionally, a pseudoaneurysm can be torn by trauma-induced fractured bone fragments, resulting in massive bleeding [4].

A facial pseudoaneurysm most often forms within days to weeks after a blunt injury on the face [5], or within a similar interval after bone reduction surgery. The risk factors for facial pseudoaneurysm are infection, poor nutrition, and radiation therapy [6]. In this case, it was not clear whether the pseudoaneurysm had occurred at the time of injury or after reduction surgery.

Physical and radiological examination is the main diagnostic method for pseudoaneurysms. On physical examination, the features of traumatic facial pseudoaneurysm include pain, progressive pulsatile swelling, and neuralgia [4,7]. In patients with anterior maxillary wall fracture, pain may occur if proper reconstruction is not performed, so it is necessary to differentiate it [8]. In the case of neuralgia, it is necessary to differentially diagnose the numbness of the entire cheek, the ala of nose, and the upper lip, which are the dominant regions of the infraorbital nerve due to midfacial bone fractures such as orbital wall fracture and zygomaticomaxillary fracture, which are common among facial bone fractures [9,10].

Imaging studies are very helpful diagnostic tools for the evaluation of the location and the size of the pseudoaneurysm. In particular, contrast-enhanced CT can be used to determine the location of the pseudoaneurysm, its size, and its relationship with adjacent structures [2,7]. Contrast-enhanced CT shows a pseudoaneurysm as a hyperattenuating smooth-walled sac adjacent to an artery. In this case, the patient did not complain of

Fig. 4. After the emergency operation, a significant decrease in the size of the pseudoaneurysm was shown (yellow arrow). Axial view (A) and coronal view (B) of the postoperative contrast-enhanced computed tomography imaging.

Fig. 5. There is a slight depression of the left cheek, which was caused by fall-down trauma. There are no deficiencies in facial expression or other neurological deficits. Frontal view (A) and oblique view (B) of postoperative clinical photography.
any particular symptoms other than left cheek pain before the
rupture. However, the presence of the pseudoaneurysm was
confirmed on contrast-enhanced facial CT, and we judged that
rupture of the pseudoaneurysm had caused massive oral and
nasal bleeding. Furthermore, the patient had no history of ad-
ditional facial trauma or other specific underlying diseases that
could have caused the massive bleeding. Therefore, an immedi-
ate emergency operation was performed while continuously
applying manual compression to the bleeding site.

The treatment options for pseudoaneurysm have been de-
scribed in previous articles. These include direct compression
of the aneurysm, angioembolization, and surgical resection of
the affected part of the artery [2]. Angioembolization is a
promising noninvasive treatment method that has recently at-
tracted attention. It can access microvascular structures that are
difficult to reach by surgery. Furthermore, it does not require
general anesthesia and has the advantage of low blood loss [11].
However, complications such as thromboembolic events, cra-
niofacial pain, swelling and paralysis, and nasopharyngeal ul-
cers may occur due to intraoperative rupture of the pseudoan-
eurysm wall [12]. Also, the development of a new venous mal-
formation region near the site of embolization can occur [13].
So, persistent follow-up through imaging is required.

There are several lessons to be learned from the clinical man-
agement of the case described herein. First, when the patient
visited the emergency medical center after a fall-down accident,
non-enhanced 3-dimensional facial CT was performed only to
evaluate the facial bone fracture. In this patient, the surgical
procedures performed for wound irrigation and internal fixa-
tion after open reduction are unlikely to have caused damage to
the maxillary posterior wall during surgery. Any application of
shock or external pressure to the patient during hospitalization
can be precluded. For the above reasons we presume that the
vessel had been injured due to the fracture of the posterior
maxillary wall at the time of trauma resulting in the formation
of a pseudoaneurysm and delayed rupture. Retrospectively, it
would have been better if the possibility of a pseudoaneurysm
had been checked earlier by conducting a contrast-enhanced
facial CT scan to assess the damage of the facial vessels, as the
severe comminution of the open fractures of the maxilla and
the zygoma have been indicative of trauma severity. Even if
contrast-enhanced facial CT had been performed after ORIF;
the retromaxillary pseudoaneurysm might have been detected
before the life-threatening emergency.

Severe fractures of the posterior maxillary wall as detected on
non-enhanced facial CT, increase the possibility of injury to the
adjacent maxillary artery. In such cases, additional contrast-en-
hanced facial CT imaging could be indicated for the early de-
tection and treatment of pseudoaneurysm.

Second, we did not implement a complete solution to the
pseudoaneurysm. Adjuvant angioembolization immediately af-
er identifying the pseudoaneurysm would have produced a
better result.

Therefore, during the initial assessment of a severe facial bone
fracture, contrast-enhanced facial CT might be helpful for eval-
uating both the facial bone fracture and abnormalities of the
vascular system. If a pseudoaneurysm is found, close observa-
tion, follow-up contrast-enhanced facial CT, and adequate
treatment are required.

NOTES

Conflict of interest
JHH and KSK are editorial board members of the journal but
were not involved in the peer reviewer selection, evaluation, or
decision process of this article. No other potential conflicts of
interest relevant to this article were reported.

Ethical approval
The study was approved by the Institutional Review Board of
Chonnam National University Hospital (IRB No. CNUH-
EXP-2021-114) and performed in accordance with the princi-
bles of the Declaration of Helsinki. Written informed consent
was obtained.

Patient consent
The patient provided written informed consent for the publica-
tion and the use of his images.

ORCID
Jae Ha Hwang https://orcid.org/0000-0001-7556-3594
Woo Hyeong Kim https://orcid.org/0000-0003-2607-8300
Jun Ho Choi https://orcid.org/0000-0002-4848-517X
Kwang Seog Kim https://orcid.org/0000-0002-6766-4640
Sam Yong Lee https://orcid.org/0000-0002-3185-2519

Author contribution
Conceptualization: JHH, SYL. Data curation: WHK. Method-
ology: WHK, JHC. Project administration: JHH, WHK. Visu-
alization: JHC. Supervision: JHH, KSK, SYL. Validation: KSK,
SYL. Writing - original draft: WHK. Writing - review & editing:
WHK, KSK.

REFERENCES
1. Conner WC 3rd, Rohrich RJ, Pollock RA. Traumatic aneu-

