DOI QR코드

DOI QR Code

16S rRNA gene-based sequencing of cucumber (Cucumis sativus L.) microbiota cultivated in South Korea

16S rRNA 유전자 염기서열 분석에 기반한 국내 재배 오이의 상재균총 분석

  • Seo, Dong Woo (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Seung Min (Division of Human Ecology, Korea National Open University) ;
  • Lee, Heoun Reoul (Department of Food Science and Technology, Chungnam National University) ;
  • Yum, Su-jin (Department of Food Science and Technology, Chungnam National University) ;
  • Jeong, Hee Gon (Department of Food Science and Technology, Chungnam National University)
  • 서동우 (충남대학교 식품공학과) ;
  • 김승민 (한국방송통신대학교 생활과학부) ;
  • 이현열 (충남대학교 식품공학과) ;
  • 염수진 (충남대학교 식품공학과) ;
  • 정희곤 (충남대학교 식품공학과)
  • Received : 2021.01.26
  • Accepted : 2021.05.10
  • Published : 2021.06.30

Abstract

Various vegetables, including cucumbers, have a high probability of foodborne illness because they are usually eaten raw. In this study, we analyzed the 16S rRNA gene sequences of the cucumber (Cucumis sativus L.) microbiota. The diversity indices of cucumber cultivated in May were higher than in cucumber cultivated in November. At the phylum level, Proteobacteria, Firmicutes, and Actinobacteria were predominant. The classes generally comprised Gammaproteobacteria, Bacilli, Alphaproteobacteria, and Actinobacteria. At the genus level, the proportions of Aureimonas, Escherichia, and Microbacterium in samples from May were relatively high, whereas Enterococcus, Pseudomonas, and Rhizobium accounted for a higher proportion in samples from November. Moreover, it is noteworthy that potential pathogenic genera such as Acinetobacter, Aerococcus, Aureimonas, Enterobacter, Enterococcus, Escherichia, Pantoea, Pseudomonas, and Staphylococcus were detected. Although further studies on the characteristics of potential pathogens are required, our results can be used to improve the food safety of vegetables.

본 연구에서는 16S rRNA 염기서열 분석을 통하여 시설재배 오이 내 상재균총 군집 특성을 분석하였으며, 수확 시기 및 지역에 따른 상재균총에 대한 정보를 제공하였다. 상재균총 다양성 분석(α-diversity)의 경우 5월 시료에서 더 높은 수치의 Observed OTUs와 Chao1 index가 나타났다. PCoA (β-diversity)분석을 통해서 수확 시기에 따른 상재균총의 차이가 존재함을 확인하였다. Phylum 수준에서는 Proteobacteria, Firmicutes, Actinobacteria가 우점하였고, class 수준에서는 Gammaproteobacteria, Bacilli, Alphaproteobacteria, Actinobacteria가 주로 존재하였다. Genus 수준에서는 시기적인 요인이 주로 상재균총에 영향을 끼치는 것을 확인할 수 있었으며, 일부 지역적 요인의 영향도 관찰 되었다. 5월 시료에서는 Aureimonas, Escherichia, Microbacterium이 11월 시료에서는 Enterococcus, Pseudomonas, Rhizobium이 더 높은 비율을 차지하였다. 이외에도, Acinetobacter, Aerococcus, Aureimonas, Enterobacter, Enterococcus, Escherichia, Pantoea, Pseudomonas, Staphylococcus와 같이 잠재적인 위험성을 가지는 genus가 존재함을 확인하였다.

Keywords

Acknowledgement

이 연구는 충남대학교 학술연구비의 지원을 받아 수행됨.

References

  1. Abadias M, Usall J, Anguera M, Solsona C, Vinas I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 123: 121-129 (2008) https://doi.org/10.1016/j.ijfoodmicro.2007.12.013
  2. Antunes L, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71: 292-301 (2014) https://doi.org/10.1111/2049-632x.12125
  3. Aydogan EL, Busse HJ, Moser G, Muller C, Kampfer P, Glaeser SP. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int. J. Syst. Evol. Microbiol. 66: 3345-3354 (2016) https://doi.org/10.1099/ijsem.0.001200
  4. Berger CN, Shaw RK, Brown DJ, Mather H, Clare S, Dougan G, Pallen MJ, Frankel G. Interaction of Salmonella enterica with basil and other salad leaves. ISME J. 3: 261-265 (2009) https://doi.org/10.1038/ismej.2008.95
  5. Bergholz TM, Switt AIM, Wiedmann M. Omics approaches in food safety: fulfilling the promise? Trends Microbiol. 22: 275-281 (2014) https://doi.org/10.1016/j.tim.2014.01.006
  6. Bronikowski AM, Bennett AF, Lenski RE. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments. Evolution 55: 33-40 (2001) https://doi.org/10.1111/j.0014-3820.2001.tb01270.x
  7. CDC. Annual Summaries of Foodborne Outbreaks. Available from: https://www.cdc.gov/fdoss/annual-reports/index.html. Accessed Nov. 11, 2019.
  8. CDC. National Outbreak Reporting System (NORS). Available from: https://wwwn.cdc.gov/norsdashboard. Accessed Dec. 7, 2020.
  9. Chang YH, Choo JH, Lee SY, Kim TY, Jin MH, Chang MY, Lee SH, Lee CK, Park SG. Inhibition of melanogenesis by cucurbitacin B from Cucumis sativus L. J. Soc. Cosmet. Scientists Korea 40: 403-412 (2014) https://doi.org/10.15230/SCSK.2014.40.4.403
  10. Chen TR, Wei QK, Chen YJ. Pseudomonas spp. and Hafnia alvei growth in UHT milk at cold storage. Food Control 22: 697-701 (2011) https://doi.org/10.1016/j.foodcont.2010.10.004
  11. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol. 62: 188-197 (2011) https://doi.org/10.1007/s00248-011-9883-y
  12. Cordovez V, Schop S, Hordijk K, de Boulois HD, Coppens F, Hanssen I, Raaijmakers JM, Carrion VJ. Priming of plant growth promotion by volatiles of root-associated Microbacterium spp. Appl. Environ. Microbiol. 84: e01865-18 (2018)
  13. Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 3: 738-744 (2009) https://doi.org/10.1038/ismej.2009.16
  14. Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989- 1992 (2007) https://doi.org/10.1128/JCM.00632-07
  15. Davin-Regli A. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 6: 392-401 (2015) https://doi.org/10.3389/fmicb.2015.00392
  16. de Quadros Rodrigues R, Loiko MR, de Paula CMD, Hessel CT, Jacxsens L, Uyttendaele M, Bender RJ, Tondo EC. Microbiological contamination linked to implementation of good agricultural practices in the production of organic lettuce in Southern Brazil. Food Control 42: 152-164 (2014) https://doi.org/10.1016/j.foodcont.2014.01.043
  17. Drouin P, Prevost D, Antoun H. Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol. Ecol. 32: 111-120 (2000) https://doi.org/10.1111/j.1574-6941.2000.tb00705.x
  18. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants. Ann. Agric. Environ. Med. 23: 197-205 (2016) https://doi.org/10.5604/12321966.1203878
  19. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinform. 27: 2194-2200 (2011) https://doi.org/10.1093/bioinformatics/btr381
  20. Eshaghi A, Shahinas D, Patel SN, Kus JV. First draft genome sequence of Aureimonas altamirensis, isolated from patient blood culture. FEMS Microbiol. Lett. 362: (2015)
  21. Filip Z, Hermann S. An attempt to differentiate Pseudomonas spp. and other soil bacteria by FT-IR spectroscopy. Eur. J. Soil Biol. 37: 137-143 (2001) https://doi.org/10.1016/S1164-5563(01)01078-0
  22. Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ. Microbiol. Rep. 3: 329-339 (2011) https://doi.org/10.1111/j.1758-2229.2010.00229.x
  23. Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394-401 (1997) https://doi.org/10.1038/387394a0
  24. Frenk S, Hadar Y, Minz D. Resilience of soil bacterial community to irrigation with water of different qualities under M editerranean climate. Environ. Microbiol. 16: 559-569 (2014) https://doi.org/10.1111/1462-2920.12183
  25. Gaastra W, Svennerholm AM. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol. 4: 444-452 (1996) https://doi.org/10.1016/0966-842X(96)10068-8
  26. Geornaras I, Kunene NF, von Holy A, Hastings JW. Amplified fragment length polymorphism fingerprinting of Pseudomonas strains from a poultry processing plant. Appl. Environ. Microbiol. 65: 3828-3833 (1999) https://doi.org/10.1128/aem.65.9.3828-3833.1999
  27. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685 (2004) https://doi.org/10.1128/MMBR.68.4.669-685.2004
  28. Hanshew AS, Mason CJ, Raffa KF, Currie CR. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J. Microbiol. Methods 95: 149-155 (2013) https://doi.org/10.1016/j.mimet.2013.08.007
  29. Ingraham JL. Growth of psychrophilic bacteria. J. Bacteriol. 76: 75- 80 (1958) https://doi.org/10.1128/jb.76.1.75-80.1958
  30. Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77: 3202-3210 (2011) https://doi.org/10.1128/AEM.00133-11
  31. Iversen C, Forsythe S. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Technol. 14: 443-454 (2003) https://doi.org/10.1016/S0924-2244(03)00155-9
  32. Jang JH, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Escherichia coli: ecology and public health implications-a review. J. Appl. Microbiol. 123: 570-581 (2017) https://doi.org/10.1111/jam.13468
  33. Jeon DY, Yum SJ, Seo DW, Kim SM, Jeong HG. Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res. Int. 126: 108664 (2019) https://doi.org/10.1016/j.foodres.2019.108664
  34. Jo MJ, Jeong AR, Kim HJ, Lee NR, Oh SW, Kim YJ, Chun HS, Koo MS. Microbiological quality of fresh-cut produce and organic vegetables. Korean J. Food Sci. Technol. 43: 91-97 (2011) https://doi.org/10.9721/KJFST.2011.43.1.091
  35. KAMIS. Cool and delicious summer vegetables (Cucumber). Available from: https://www.kamis.or.kr/customer/trend/product/product.do?action=detail&brdctsno=426245&pagenum=1&search_option=SUBJECT&search_keyword=%EC%98%A4%EC%9D%B4&. Accessed Jun. 21, 2018.
  36. Kim BR, Shin JW, Guevarra RB, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson RE. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 27: 2089-2093 (2017) https://doi.org/10.4014/jmb.1709.09027
  37. Kim DH, Hong SH, Kim YT, Ryu SY, Kim HB, Lee JH. Metagenomic approach to identifying foodborne pathogens on Chinese cabbage. J. Microbiol. Biotechnol. 28: 227-235 (2018) https://doi.org/10.4014/jmb.1710.10021
  38. Kim BY, Weon HY, Park IC, Lee SY, Kim WG, Song JK. Microbial diversity and community analysis in lettuce or cucumber cultivated greenhouse soil in Korea. K.J.S.S.F. 44: 1169-1175 (2011)
  39. Kirschbaum MU. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27: 753-760 (1995) https://doi.org/10.1016/0038-0717(94)00242-S
  40. Kisluk G, Yaron S. Presence and persistence of Salmonella enterica serotype Typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley. Appl. Environ. Microbiol. 78: 4030-4036 (2012) https://doi.org/10.1128/AEM.00087-12
  41. Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front. Microbiol. 8: 108-117 (2017)
  42. Kumar PS, Brooker MR, Dowd SE, Camerlengo T. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One 6: e20956 (2011) https://doi.org/10.1371/journal.pone.0020956
  43. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821 (2013) https://doi.org/10.1038/nbt.2676
  44. Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2: 63-76 (2003)
  45. Liu YU, Geng JC, Sha XY, Zhao YX, Hu TM, Yang PZ. Effect of Rhizobium Symbiosis on Low-Temperature Tolerance and Antioxidant Response in Alfalfa (Medicago sativa L.) Front. Plant Sci. 10: 538-551 (2019)
  46. Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J. Appl. Microbiol. 110: 1203-1214 (2011) https://doi.org/10.1111/j.1365-2672.2011.04969.x
  47. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. J. Appl. Environ. Microbiol. 73: 1576-1585 (2007) https://doi.org/10.1128/AEM.01996-06
  48. Lu L, Ku KM, Palma-Salgado SP, Storm AP, Feng H, Juvik JA, Nguyen TH. Influence of epicuticular physicochemical properties on porcine rotavirus adsorption to 24 leafy green vegetables and tomatoes. PLoS One 10: e0132841 (2015) https://doi.org/10.1371/journal.pone.0132841
  49. Madhaiyan M, Reddy BV, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram SP, Sa T. Plant growth-promoting Methylobacterium induces defense responses in groundnu (Arachis hypogaea L.) compared with rot pathogens. Curr. Microbiol. 75: 988-996 (2007) https://doi.org/10.1007/s00284-018-1472-6
  50. MAFRA. 2018 Facility vegetables greenhouse status and vetegable production performance. Available from: https://www.mafra.go.kr/mafra/366/subview.do?enc=Zm5jdDF8QEB8JTJGYmJzJTJGbWFmcmElMkY3MSUyRjMyMTY2OCUyRmFydGNsVmlldy5kbyUzRg%3D%3D. Accessed Oct. 15, 2019.
  51. Mahmood A, Takagi K, Ito K, Kataoka R. Changes in endophytic bacterial communities during different growth stages of cucumber (Cucumis sativus L.). World J. Microbiol. Biotechnol. 35: 1-13 (2019) https://doi.org/10.1007/s11274-018-2566-9
  52. McCabe-Sellers BJ, Beattie SE. Food safety: emerging trends in foodborne illness surveillance and prevention. J. Am. Diet. Assoc. 104: 1708-1717 (2004) https://doi.org/10.1016/j.jada.2004.08.028
  53. MFDS. Food safety information portal. Available from: https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=3724&menu_grp=MENU_NEW02. Accessed Dec. 7, 2020.
  54. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for pathogen detection in public health. Genome Med. 5: 1-14 (2013) https://doi.org/10.1186/gm405
  55. Murray BE. The life and times of the Enterococcus. Clin. Microbiol. Rev. 3: 46-65 (1990) https://doi.org/10.1128/cmr.3.1.46-65.1990
  56. Nakata K. High resistance to oxygen radicals and heat is caused by a galactoglycerolipid in Microbacterium sp. M874. J. Biochem. 127: 731-737 (2000) https://doi.org/10.1093/oxfordjournals.jbchem.a022664
  57. Naravaneni R, Jamil K. Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol. 54: 51-54 (2005) https://doi.org/10.1099/jmm.0.45687-0
  58. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17: 1791-1798 (2011) https://doi.org/10.3201/eid1710.110655
  59. Panoff JM, Corroler D, Thammavongs B, Boutibonnes P. Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2-2. J. Bacteriol. 179: 4451-4454 (1997) https://doi.org/10.1128/jb.179.13.4451-4454.1997
  60. Park SH, Park WS, Kim MR. Quality characteristics of commercial Oiji, Korean cucumber pickle. Korean J. Food Sci. Technol. 36: 385-392 (2004)
  61. Perez-Diaz IM, Hayes JS, Medina E, Webber AM, Butz N, Dickey AN, Lu Z, Azcarate-Peril MA. Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food Microbiol. 77: 10-20 (2019) https://doi.org/10.1016/j.fm.2018.08.003
  62. Perez-Garcia A, Romero E, De Vicente A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotech. 22: 187-193 (2011) https://doi.org/10.1016/j.copbio.2010.12.003
  63. Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin. Microbiol. Infect. 22: 22-27 (2016) https://doi.org/10.1016/j.cmi.2015.09.026
  64. Rathinavelu S, Zavros Y, Merchant JL. Acinetobacter lwoffii infection and gastritis. Microbes Infect. 5: 651-657 (2003) https://doi.org/10.1016/S1286-4579(03)00099-6
  65. Schrottner P, Rudolph WW, Taube F, Gunzer F. First report on the isolation of Aureimonas altamirensis from a patient with peritonitis. Int. J. Infect. Dis. 29: 71-73 (2014) https://doi.org/10.1016/j.ijid.2014.09.006
  66. Shah N, Tang H, Doak TG, Ye Y. Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Biocomput. 16: 165-176 (2011)
  67. Shaw RK, Lasa I, Garcia BM, Pallen MJ, Hinton JC, Berger CN, Frankel G. Cellulose mediates attachment of Salmonella enterica Serovar Typhimurium to tomatoes. Environ. Microbiol. Rep. 3: 569-573 (2011) https://doi.org/10.1111/j.1758-2229.2011.00263.x
  68. Shim WB, Lee CW, Jeong MJ, Kim JS, Ryu JG, Chung DH. An investigation of the hazards associated with cucumber and hot pepper cultivation areas to establish a good agricultural practices (GAP) model. Korean J. Food Sci. Technol. 46: 108-114 (2014) https://doi.org/10.9721/KJFST.2014.46.1.108
  69. Sperandio V, Nguyen Y. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell. Infect. Microbiol. 2: 91-97 (2012)
  70. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959-964 (2000) https://doi.org/10.1038/35023079
  71. Thukral AK. A review on measurement of Alpha diversity in Biology. Agric. Res. 54: 1-10 (2017)
  72. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 14: 1-10 (2013)
  73. Vetrovsky T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8: e57923 (2013) https://doi.org/10.1371/journal.pone.0057923
  74. Williams TR, Marco ML. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. mBio. 5: e01564-14 (2014)
  75. Xicohtencatl-Cortes J, Chacon ES, Saldana Z, Freer E, Giron JA. Interaction of Escherichia coli O157: H7 with leafy green produce. J. Food. Prot. 72: 1531-1537 (2009) https://doi.org/10.4315/0362-028X-72.7.1531
  76. Xu Z, Xie J, Soteyome T, Peters BM, Shirtliff ME, Liu J, Harro JM. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Curr. Opin. Food. Sci. 26: 57-64 (2019) https://doi.org/10.1016/j.cofs.2019.03.006
  77. Yabuuchi E, Wang L, Arakawa M, Yano I. Survival of Pseudomonas pseudomallei strains at 5 degrees. Kansenshogaku zasshi 67: 331- 335 (1993) https://doi.org/10.11150/kansenshogakuzasshi1970.67.331
  78. Young G, Turner S, Davies JK, Sundqvist G, Figdor D. Bacterial DNA persists for extended periods after cell death. J. Endod. 33: 1417-1420 (2007) https://doi.org/10.1016/j.joen.2007.09.002
  79. Yanagida F, Chen Y, Onda T, Shinohara T. Durancin L28-1A, a new bacteriocin from Enterococcus durans L28-1, isolated from soil. Lett. Appl. Microbiol. 40: 430-435 (2005) https://doi.org/10.1111/j.1472-765X.2005.01693.x
  80. Yu YC, Yum SJ, Jeon DY, Jeong HG. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28: 1318-1331 (2018) https://doi.org/10.4014/jmb.1803.03007
  81. Zhang X, Wei H, Chen Q, Han X. The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biol. Biochem. 72: 26-34 (2014) https://doi.org/10.1016/j.soilbio.2014.01.034