DOI QR코드

DOI QR Code

Broadband Patch Antenna for Wireless LAN Communication of 5GHz Band

5GHz 대역의 무선랜 통신을 위한 광대역 패치 안테나

  • Received : 2021.03.02
  • Accepted : 2021.06.17
  • Published : 2021.06.30

Abstract

In this paper, the wideband patch antenna is simulated and manufactured for the wireless LAN of 5GHz band that is defined in IEEE 802.11a. In the 802.11a, 200 channels of 675MHz are defined. Therefore, the bandwidth is needed more than 12.3%. For the wideband characteristics, low dielectric constant is realized with the multi-layer of 2 teflon substrates and the air dielectric layer and the feeding method of the coupled-line is used. Optimized wideband patch antenna is simulated with the return loss of 38.99dB at the center frequency of 5.43GHz and the bandwidth of 12.9%. The gain of manufactured patch antenna is 4.38, 4.52, and 5.12dBi at the channel number of 46, 56, and 153, respectively.

본 논문에서는 IEEE 802.11a에서 정의된 5GHz 대역의 무선랜 주파수 대역을 만족하는 광대역 패치 안테나를 설계 및 제작하였다. IEEE 802.11a에서는 200개의 채널을 정의하고 있으며 이는 675MHz로 12.3% 이상의 대역폭을 요구한다. 본 논문에서는 상용화된 테프론 기판으로 공기 유전체를 포함하는 다층기판을 구현하여 낮은 유전율을 구현하고 결합선로를 통한 급전 방식을 통해 광대역 특성을 얻었다. 최적화된 광대역 무선랜 안테나는 5.43GHz의 중심주파수에서 38.99dB의 반사손실과 12.9%의 VSWR 2:1 대역폭으로 설계되었다. 제작된 안테나의 이득은 IEEE 802.11a의 채널 40, 56, 153에서 각각 4.38, 4.52, 5.12dBi를 나타내며 설계 결과와 유사한 결과를 보였다.

Keywords

Acknowledgement

본 논문은 2020년도 호남대학교 학술연구비 지원을 받아 수행되었음.

References

  1. W. Nam, J. Choi, H. Park, M. Choi, and Y. Sim, "A Study on Reorganization Plan of 5GHz Band Spectrun," Report of Korea Radio Promotion Association, Nov. 2013.
  2. G. Kumar and K. Pay, Broadband Microstip Antennas. Boston: Artech House, 2003.
  3. O. Kim, G. Kim, and S. Rhee, "Widenband Slot-Coupled Microstrip Antenna with the Reflector," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, Dec. 2019, pp. 1045-1051. https://doi.org/10.13067/JKIECS.2019.14.6.1045
  4. U. Revankar and A. Kumar, "Broadband Stacked Three-layer Circuit Microstrip Antenna Arrays," Electronics Letters, vol. 28, 1992, pp. 1995-1997. https://doi.org/10.1049/el:19921279
  5. H. Ceong, Y. Kang, and S. Rhee, "U-shaped wideband microstrip antenna on air substrate," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, 2018, pp. 937-942. https://doi.org/10.13067/JKIECS.2018.13.5.937
  6. K. Cho, D. Kim, and G. Kim, "Design of Broadband Microstrip Antenna for 2.5GHz with Inverted Parasite Patch and the Proximity Stub," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, June 2019, pp. 1045-1051.
  7. Y. Park, "Study of Microstrip Patch Antenna for 5 GHz," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 1, 2019, pp. 55-60. https://doi.org/10.13067/JKIECS.2019.14.1.55
  8. Y. Park, "Characteristics of Patch Antenna for WLAN," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 6, Dec. 2011, pp. 803-808. https://doi.org/10.13067/JKIECS.2011.6.6.803
  9. E. M. T. Jones and J. T. Bolljahn, "Coupled Strip Transmission Line Filters and Directional Couplers," Institute of Radio Engineers Trans. on Microwave Theory Tech. vol. 4, no.2, Apr. 1956, pp. 75-81. https://doi.org/10.1109/TMTT.1956.1125022
  10. J. Yang, K. Seok, and H. Sin, "Technological and Social Significance of the Revision of the Radio Law," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 4, 2019, pp. 627-636. https://doi.org/10.13067/JKIECS.2019.14.4.627