DOI QR코드

DOI QR Code

Motor Speed Control Using the Fractional Order Integral

유리차수 적분을 이용한 전동기 속도제어

  • Received : 2021.04.28
  • Accepted : 2021.06.17
  • Published : 2021.06.30

Abstract

This study intends to apply the mathematical method of fractional order differentiation to a controller that controls the response of the system. Therefore, we design integrator for the fractional index by converting it into discrete time to construct a controller. The IP controller composes an integral controller for errors and the proportional controller applies only the system output. The controller is designed by using the fractional order integrator to the integral controller of the IP controller. First, the performance of the PI controller and the IP controller is compared, and the designed controller is applied to the speed control of the motor. As a result, the motor output speed was uniformed and precise control performance could be obtained. It was confirmed that the speed error in the steady state is within 0.1 [%], and it has precise and uniform speed control performance without overshoot.

본 연구는 유리 차수 미분의 수학적인 방법을 시스템의 응답을 제어하는 제어기에 적용하고자 한다. 따라서 제어기로 구성하기 위해서는 유리수 지수에 대한 적분기를 이산시간으로 변환하여 설계한다. IP 제어기는 오차에 대한 적분제어기를 구성하고 비례제어기는 시스템 출력만 적용하는 구조이다. 유리 차수 적분기를 IP 제어기의 적분제어기에 활용함으로 제어기를 설계한다. 먼저 PI 제어기와 IP 제어기의 성능을 비교하고, 설계된 제어기를 전동기의 속도 제어에 적용한다. 그 결과 전동기의 출력상태인 속도가 균일하며 정밀한 제어 성능을 얻을 수 있었다. 정상상태의 속도오차가 0.1 [%] 이내 이고, 오버슈트가 없는 정밀하며 균일한 속도 제어 성능을 가짐을 확인할 수 있었다.

Keywords

Acknowledgement

본 논문은 2017년도 미래창조과학부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임.(No.2017R1E1A1A03070483)

References

  1. L. Debnath, "A brief historical introduction to fractional calculus," Int. J. of Mathematical Education in Science and Technology, vol. 35, no. 4, 2004, pp. 487-501. https://doi.org/10.1080/00207390410001686571
  2. P. Torvik and R. Bagley, "On the appearance of the fractional derivative in the behavior of real material," J. of Applied Mechanics, Transaction of the ASMF, vol. 51, no. 2, 1984, pp. 294-298. https://doi.org/10.1115/1.3167615
  3. C. Ma and Y. Hori, "Fractional-Order Control: Theory and Applications in Motion Control," IEEE Industrial Electronics Mag., vol. 1, no. 4, 2007, pp. 6-16. https://doi.org/10.1109/MIE.2007.909703
  4. B. Dumitru, Z. Guvenc, and J. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus Applications. Dordrecht: Springer, 2010.
  5. J. Sabatier, O. Pgrawal, and J. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Dordrecht: Springer, 2007.
  6. Y. Bae, "Comparison Analysis of Behavior between Differential Equation and Fractional Differential Equation in the Van der Pol Equation," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 1, 2016, pp. 81-86. https://doi.org/10.13067/JKIECS.2016.11.1.81
  7. J. Kang and Y. Jeon, "Position Control for Solenoid Valve using the Fractional Order Controller," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, 2018, pp. 101-106. https://doi.org/10.13067/JKIECS.2018.13.1.101
  8. S. Back, "A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, Aug. 2018, pp. 760.
  9. H. Kwon, "Knee Rehabilitation System through EMG Signal analysis and BLDC Motor Control," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 1009-1018.
  10. H. Cho, and W. Kim, "Sensorless Control of High-Speed BLDC," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 3, Jun. 2020, pp. 503-512. https://doi.org/10.13067/JKIECS.2020.15.3.503
  11. Y. Jeon and S. Lee, "Tracking Control of BLDC Motor Based on Disturbance Observer," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 5, Oct. 2020, pp. 907-912. https://doi.org/10.13067/JKIECS.2020.15.5.907
  12. K. Ogata, Modern Control Engineering. New York: Prentice Hall, 2010.