DOI QR코드

DOI QR Code

On Larger Rate Volume of non-SIC NOMA over SIC NOMA for 3-user Correlated Information Sources

삼중 상관 정보원에서 SIC 대한 non-SIC 비직교 다중 접속의 확장 전송률 용적에 관해

  • 정규혁 (단국대학교 소프트웨어학과)
  • Received : 2021.03.15
  • Accepted : 2021.06.17
  • Published : 2021.06.30

Abstract

This paper investigates the achievable rate volumes for non-successive interference cancellation(SIC) non-orthogonal multiple access(NOMA) schemes, especially for 3-user correlated information sources(CIS). First, the closed-form expressions for the achievable rate volumes of non-SIC 3-user CIS NOMA are derived. Then it is numerically shown that the large correlation coefficients, as the achievable rate volumes of non-SIC 3-user CIS NOMA is larger than that of conventional SIC 3-user independent information sources(IIS) NOMA. We also demonstrate by various comparisons that the impact of the correlation coefficients of weaker channel gain users on achievable rate volume is more significant than those of stronger channel gain users.

본 논문은 3명의 사용자의 상관 정보원에 대한 non-SIC 비직교 다중 접속의 전송률 용적을 고찰한다. 먼저, non-SIC 3명의 사용자의 상관 정보원의 비직교 다중 접속의 전송률 용적의 폐쇄형 표현 식을 유도한다. 다음, 수치적 결과를 통해, 큰 상관 관계 계수에 대해서, non-SIC 3명의 사용자의 상관 정보원의 비직교 다중 접속의 전송률 용적이 SIC 3명의 사용자의 독립 정보원의 비직교 다중 접속의 전송률 용적보다 크다는 것을 보여준다. 또한, 다양한 비교를 통하여, 약 채널 사용자들의 상관 관계 계수들이 강 채널 사용자들의 상관 관계 계수들보다 전송률 용적에 미치는 영향이 더 크다는 것을 입증한다.

Keywords

References

  1. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Veh. Technol. Conf. (VTC Spring), Dresden, Germany, June 2013, pp. 1-5.
  2. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C.-L. I, and H. V. Poor, "Application of non-orthogonal multiple access in LTE and 5G networks," IEEE Commun. Mag., vol. 55, no. 2, Feb. 2017, pp. 185-191. https://doi.org/10.1109/MCOM.2017.1500657CM
  3. M. Yang, "An adaptive tone reservation scheme for PAPR reduction of OFDM signals," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 817-824.
  4. H. Ahn and M. Yang, "Analysis of Automatic Neighbor Relation Technology in Self Organization Networks of LTE," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 893-900.
  5. K. Zhang and H. Suh, "An analysis of multiuser diversity technology in the MIMO-OFDM system," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, Dec. 2019, pp. 1121-1128. https://doi.org/10.13067/JKIECS.2019.14.6.1121
  6. L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, "Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends," IEEE Commun. Mag., vol. 53, no. 9, Sept. 2015, pp. 74-81. https://doi.org/10.1109/MCOM.2015.7263349
  7. Q. Wang, R. Zhang, L.-L. Yang, and L. Hanzo, "Non-orthogonal multiple access: A unified perspective," IEEE Wireless Commun., vol. 25, no. 2, Apr. 2018, pp. 10-16. https://doi.org/10.1109/mwc.2018.1700070
  8. D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, "Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends," IEEE Wireless Commun., vol. 25, no. 2, May 2018, pp. 109-117. https://doi.org/10.1109/MWC.2018.1700134
  9. M. Aldababsa, C. Goztepe, G. K. Kurt, and O. Kucur, "Bit error rate for NOMA network," IEEE Commun. Lett., vol. 24, no. 6, June 2020, pp. 1188-1191. https://doi.org/10.1109/lcomm.2020.2981024
  10. A.-A.-A. Boulogeorg, N. D. Chatzidiamantis, and G. K. Karagiannid, "Non-orthogonal multiple access in the presence of phase noise," IEEE Commun. Lett., vol. 24, no. 5, May 2020, pp. 1133-1137. https://doi.org/10.1109/lcomm.2020.2978845
  11. L. Bariah, S. Muhaidat, and A. Al-Dweik, "Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels," IEEE Trans. Commun., vol. 67, no. 2, Feb. 2019, pp. 1586-1599. https://doi.org/10.1109/tcomm.2018.2876867
  12. T. Assaf, A. Al-Dweik, M. E. Moursi, and H. Zeineldin, "Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels," IEEE Access, vol. 7, 2019, pp. 134539-134555. https://doi.org/10.1109/access.2019.2942113
  13. I. Lee and J. Kim, "Average Symbol Error Rate Analysis for Non-Orthogonal Multiple Access With M-Ary QAM Signals in Rayleigh Fading Channels," IEEE Commun. Lett., vol. 23, no. 8, Aug. 2019, pp. 1328-1331. https://doi.org/10.1109/lcomm.2019.2921770
  14. Z. Yang, W. Xu, C. Pan, Y. Pan, and M. Chen, "On the optimality of power allocation for NOMA downlinks with individual QoS constraints," IEEE Commun. Lett., vol. 21, no. 7, July 2017, pp. 1649-1652. https://doi.org/10.1109/LCOMM.2017.2689763
  15. Z. Yang, W. Xu, Y. Pan, C. Pan, and M. Chen, "Energy efficient resource allocation in machine-to-machine communications with multiple access and energy harvesting for IoT," IEEE Internet Things J., vol. 5, no. 1, Feb. 2018, pp. 229-245. https://doi.org/10.1109/jiot.2017.2778766
  16. M. Qiu, Y.-C. Huang, and J. Yuan, "Downlink non-orthogonal multiple access without SIC for block fading channels: an algebraic rotation approach," IEEE Trans. Wireless Commun., vol. 18, no. 8, Aug. 2019, pp. 3903-3918. https://doi.org/10.1109/twc.2019.2919292
  17. M. Qiu, Y.-C. Huang, J. Yuan, and C.-L. Wang, "Lattice-partition-based downlink non-orthogonal multiple access without SIC for slow fading channels," IEEE Trans. Commun., vol. 67, no. 2, Feb. 2019, pp. 1166-1181. https://doi.org/10.1109/tcomm.2018.2878847
  18. Z. Dong, H. Chen, J. Zhang, and L. Huang, "On non-orthogonal multiple access with finite-alphabet inputs in Z-channels," IEEE J. Sel. Areas Commun., vol. 35, no. 12, Dec. 2017, pp. 2829-2845. https://doi.org/10.1109/jsac.2017.2724619
  19. Z. Dong, H. Chen, J. Zhang, L. Huang, and B. Vucetic, "Uplink non-orthogonal multiple access with finite-alphabet inputs," IEEE Trans. Wireless Commun., vol. 17, no. 9, Sept. 2018, pp. 5743-5758. https://doi.org/10.1109/twc.2018.2849413
  20. K. Chung, "Optimal detection for NOMA systems with correlated information sources of interactive mobile users," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, Aug. 2020, pp. 651-657. https://doi.org/10.13067/JKIECS.2020.15.4.651
  21. K. Chung, "Improved BER performance of non-orthogonal multiple access system for interactive mobile users: maximum likelihood detection perspective," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 5, Oct. 2020, pp. 865-872. https://doi.org/10.13067/JKIECS.2020.15.5.865
  22. K. Chung, "On negative correlation bit-to-symbol(: B2S) mapping for NOMA with correlated information sources in 5G systems," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 5, Oct. 2020, pp. 881-888. https://doi.org/10.13067/JKIECS.2020.15.5.881
  23. K. Chung, "Analysis of achievable data rate under BPSK modulation: CIS NOMA perspective," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 6, Dec. 2020, pp. 995-1002. https://doi.org/10.13067/JKIECS.2020.15.6.995
  24. K. Chung, "Analyses on achievable data rate for single-user decoding(SUD) receiver: with application to CIS NOMA strong channel user," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 6, Dec. 2020, pp. 1003-1010. https://doi.org/10.13067/JKIECS.2020.15.6.1003
  25. K. Chung, "NOMA for correlated information sources in 5G systems," IEEE Commun. Lett., vol. 25, no. 2, Feb. 2021, pp. 422-426. https://doi.org/10.1109/LCOMM.2020.3027726