DOI QR코드

DOI QR Code

Caspase-8 Potentiates Triglyceride (TG)-Induced Cell Death of THP-1 Macrophages via a Positive Feedback Loop

Caspase-8의 양성 피드백 방식을 통한 중성지방-유도 THP-1 대식세포 사멸 증가

  • Jung, Byung Chul (Department of Nutritional Sciences and Toxicology, University of California) ;
  • Lim, Jaewon (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Kim, Sung Hoon (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Kim, Yoon Suk (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University)
  • 정병출 (캘리포니아대학교 버클리캠퍼스 영양과학 및 독성학과) ;
  • 임재원 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 김성훈 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 김윤석 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과)
  • Received : 2021.02.25
  • Accepted : 2021.04.13
  • Published : 2021.06.30

Abstract

Hypertriglyceridemia is the main risk factor for atherosclerosis. It is reported that triglyceride (TG) induces macrophage cell death, and is involved in the formation of plaques and development of atherosclerosis. We previously reported that TG-induced cell death of macrophages is mediated via pannexin-1 activation, which increases the extracellular ATP and subsequent increase in potassium efflux, thereby activating the caspase-2/caspase-1/apoptotic caspases, including the caspase-8 pathway. Contrarily, some studies have reported that caspase-8 is an upstream molecule of caspase-1 and caspase-2 in several cellular processes. Therefore, this study was undertaken to investigate whether caspase-8 influences its upstream molecules in TG-stimulated macrophage cell death. We first confirmed that caspase-8 induces caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage in TG-treated macrophages. Next, we determined that the inhibition of caspase-8 results in reduced caspase-1 and -2 activity, which are upstream molecules of caspase-8 in TG-induced cell death of macrophages. We also found that ATP treatment restores the caspase-8 inhibitor-induced caspase-2 activity, thereby implying that caspase-8 affects the upstream molecules responsible for increasing the extracellular ATP levels in TG-induced macrophage cell death. Taken together, these findings indicate that caspase-8 potentiates the TG-induced macrophage cell death by activating its upstream molecules.

고중성지방혈증은 죽상동맥경화증의 주요한 위험 요인 중 하나이다. 중성지방은 대식세포의 세포 사멸을 유도하여 죽상동맥경화증 발생에 기여하는 것으로 알려져 있다. 본 연구팀은 앞선 연구에서 대식세포의 중성지방-유도 세포 사멸이 pannexin-1 활성화에 의한 세포 외 ATP 농도 증가, caspase-2와 caspase-1 활성화, caspase-8을 포함한 apoptotic caspase 활성화 경로로 일어나는 것을 보고하였다. 한편 다른 연구들에서는 세포 내 다른 여러 기전에서 caspase-8이 caspase-1과 -2의 상위 단백질이라 보고하고 있다. 따라서 본 연구에서는 caspase-8이 중성지방-유도 대식세포 사멸 과정에서 상위단백지로 영향을 미치는지 여부를 조사하기 위해 수행되었다. 본 연구진은 caspase-8이 중성지방-유도 대식세포 사멸 과정에서 caspase-3 활성화 및 PARP 절단을 유도하였다. 다음으로 중성지방이 처리된 대식세포에서 caspase-8 억제 시, caspase-8의 상위 단백질로 보고한 caspase-1 및 -2의 활성이 감소하는 것을 확인하였다. 또한 ATP 처리 시 caspase-8 억제제 처리에 의해 감소된 caspase-2의 활성이 회복되는 것을 확인하였다. 위의 결과를 통해 caspase-8이 중성지방-유도 대식세포 사멸 과정에서 세포 외부 ATP 농도 증가에 관여하는 단백질 또는 그 상위 기전에 양성피드백 방식으로 영향을 미쳐 caspase-1과 -2를 활성화하여 중성지방-유도 대식세포 사멸을 증진시킴을 알 수 있다.

Keywords

Acknowledgement

This Research was supported by the Korea Nazarene University Research Grants 2021.

References

  1. Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol. 2019;10:306. https://doi.org/10.3389/fphar.2019.00306
  2. Tabas I. Macrophage apoptosis in atherosclerosis: Consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal. 2009;11:2333-2339. https://doi.org/10.1089/ars.2009.2469
  3. Persson J, Nilsson J, Lindholm MW. Cytokine response to lipoprotein lipid loading in human monocyte-derived macrophages. Lipids Health Dis. 2006;5:17. https://doi.org/10.1186/1476-511X-5-17
  4. Jung BC, Kim SH, Lim J, Kim YS. Activation of pannexin-1 mediates triglyceride-induced macrophage cell death. BMB Rep. 2020;53:588-593. https://doi.org/10.5483/BMBRep.2020.53.11.179
  5. Grutter MG. Caspases: Key players in programmed cell death. Curr Opin Struct Biol. 2000;10:649-655. https://doi.org/10.1016/s0959-440x(00)00146-9
  6. Lavrik IN, Krammer PH. Life and death decisions in the cd95 system: main pro-and anti-apoptotic modulators. Acta Naturae. 2009;1:80-83. https://doi.org/10.32607/20758251-2009-1-1-80-83
  7. Lin CF, Chen CL, Chang WT, Jan MS, Hsu LJ, Wu RH, et al. Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced apoptosis. J Biol Chem. 2004;279:40755-40761. https://doi.org/10.1074/jbc.M404726200
  8. Jelinek M, Balusikova K, Kopperova D, Nemcova-Furstova V, Sramek J, Fidlerova J. et al. Caspase-2 is involved in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 2013;13:42. https://doi.org/10.1186/1475-2867-13-42
  9. Van de Craen M, Declercq W, Van den brande I, Fiers W, Vandenabeele P. The proteolytic procaspase activation network: An in vitro analysis. Cell Death Differ. 1999;6:1117-1124. https://doi.org/10.1038/sj.cdd.4400589
  10. Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA, Zwack EE, et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci U S A. 2014;111: 7385-7390. https://doi.org/10.1073/pnas.1403252111
  11. Aronis A, Madar Z, Tirosh O. Mechanism underlying oxidative stress-mediated lipotoxicity: Exposure of j774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med. 2005; 38:1221-1230. https://doi.org/10.1016/j.freeradbiomed.2005.01.015
  12. Jo HS, Kim DS, Ahn EH, Kim DW, Shin MJ, Cho SB, et al. Protective effects of Tat-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals. BMB Rep. 2016;49:617-622. https://doi.org/10.5483/BMBRep.2016.49.11.117
  13. Joo D, Woo JS, Cho KH, Han SH, Min TS, Yang DC, et al. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells. BMB Rep. 2016;49:220-225. https://doi.org/10.5483/BMBRep.2016.49.4.004
  14. Lim J, Kim HK, Kim SH, Rhee KJ, Kim YS. Caspase-2 mediates triglyceride (tg)-induced macrophage cell death. BMB Rep. 2017;50:510-515. https://doi.org/10.5483/bmbrep.2017.50.10.106
  15. Pozzesi N, Fierabracci A, Liberati AM, Martelli MP, Ayroldi E, Riccardi C, et al. Role of caspase-8 in thymus function. Cell Death Differ. 2014;21:226-233. https://doi.org/10.1038/cdd.2013.166
  16. Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, et al. Fadd and caspase-8 mediate priming and activation of the canonical and noncanonical nlrp3 inflammasomes. J Immunol. 2014;192:1835-1846. https://doi.org/10.4049/jimmunol.1302839
  17. Fava LL, Bock FJ, Geley S, Villunger A. Caspase-2 at a glance. J Cell Sci. 2012;125:5911-5915. https://doi.org/10.1242/jcs.115105
  18. Aksenova VI, Bylino OV, Zhivotovskii BD, Lavrik IN. Caspase-2: What do we know today?. Mol Biol. 2013;47:165-180. https://doi.org/10.1134/S0026893313010020
  19. Fritsch M, Gunther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683-687. https://doi.org/10.1038/s41586-019-1770-6
  20. Nhan TQ, Liles WC, Schwartz SM. Role of caspases in death and survival of the plaque macrophage. Arterioscler Thromb Vasc Biol. 2005;25:895-903. https://doi.org/10.1161/01.ATV.0000159519.07181.33
  21. Aguirre A, Shoji KF, Saez JC, Henriquez M, Quest AF. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7). J Cell Physiol. 2013;228:485-493. https://doi.org/10.1002/jcp.24159
  22. Sakamaki K, Ishii TM, Sakata T, Takemoto K, Takagi C, Takeuchi A, et al. Dysregulation of a potassium channel, thik-1, targeted by caspase-8 accelerates cell shrinkage. Biochim Biophys Acta. 2016;1863:2766-2783. https://doi.org/10.1016/j.bbamcr.2016.08.010