DOI QR코드

DOI QR Code

GENERALIZED SEQUENTIAL CONVOLUTION PRODUCT FOR THE GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM

  • Kim, Byoung Soo (School of Liberal Arts, Seoul National University of Science and Technology) ;
  • Yoo, Il (Department of Mathematics, Yonsei University)
  • Received : 2020.12.28
  • Accepted : 2021.05.24
  • Published : 2021.06.30

Abstract

This paper is a further development of the recent results by the authors on the generalized sequential Fourier-Feynman transform for functionals in a Banach algebra Ŝ and some related functionals. We investigate various relationships between the generalized sequential Fourier-Feynman transform and the generalized sequential convolution product of functionals. Parseval's relation for the generalized sequential Fourier-Feynman transform is also given.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the Seoul National University of Science and Technology.

References

  1. R.H. Cameron and D.A. Storvick, A simple definition of the Feynman integral, with applications, Mem. Amer. Math. Soc. No. 288, Amer. Math. Soc., 1983. https://doi.org/10.1090/memo/0288
  2. R.H. Cameron and D.A. Storvick, Sequential Fourier-Feynman transforms, Annales Acad. Scient. Fenn. 10 (1985), 107-111.
  3. R.H. Cameron and D.A. Storvick, New existence theorems and evaluation formulas for sequential Feynman integrals, Proc. London Math. Soc. 52 (1986), 557-581.
  4. R.H. Cameron and D.A. Storvick, New existence theorems and evaluation formulas for analytic Feynman integrals, Deformations Math. Struct., Complex Analy. Phys. Appl., Kluwer Acad. Publ., Dordrecht (1989), 297-308.
  5. K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo, Relationships involving generalized Fourier-Feynman transform, convolution and first variation, Integral Transform. Spec. Funct. 16 (2005), 391-405. https://doi.org/10.1080/10652460412331320359
  6. K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo, Sequential Fourier-Feynman transform, convolution and first variation, Trans. Amer. Math. Soc. 360 (2008), 1819-1838. https://doi.org/10.1090/S0002-9947-07-04383-8
  7. K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transform. Spec. Funct. 10 (2000), 179-200. https://doi.org/10.1080/10652460008819285
  8. S.J. Chang and J.G. Choi, Rotation of Gaussian paths on Wiener space with applications, Banach J. Math. Anal. 12 (2018), 651-672. https://doi.org/10.1215/17358787-2017-0057
  9. D.M. Chung, C. Park and D. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), 377-391.
  10. T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. https://doi.org/10.2307/2154908
  11. T. Huffman, C. Park and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261.
  12. T. Huffman, C. Park and D. Skoug, Generalized transforms and convolutions, Int. J. Math. Math. Sci. 20 (1997), 19-32. https://doi.org/10.1155/S0161171297000045
  13. C. Park and D. Skoug, A Kac-Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991), 411-427. https://doi.org/10.1216/jiea/1181075633
  14. C. Park, D. Skoug and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468. https://doi.org/10.1216/rmjm/1181071725
  15. D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147-1176. https://doi.org/10.1216/rmjm/1181069848
  16. I. Yoo and B.S. Kim, Generalized sequential Feynman integral and Fourier-Feynman transform, Rocky Mountain J. Math. accepted. (2021).