DOI QR코드

DOI QR Code

Salicylamide Enhances Melanin Synthesis in B16F1 Melanoma Cells

  • Ito, Yusuke (Division of Animal Science, College of Agriculture, Tamagawa University) ;
  • Sato, Kazuomi (Division of Animal Science, College of Agriculture, Tamagawa University)
  • Received : 2020.12.09
  • Accepted : 2021.02.10
  • Published : 2021.07.01

Abstract

Salicylamide, a non-steroidal anti-inflammatory drug (NSAID), is used as an analgesic and antipyretic agent. We have previously shown that several NSAIDs have anti-melanogenic properties in B16F1 melanoma cells. In contrast, we have found that salicylamide enhances melanin contents in B16F1 melanoma cells; however, the underlying mechanism is not known. Therefore, we investigated the mechanism through which salicylamide stimulates melanogenesis. Interestingly, salicylamide enhanced diphenolase activity in a cell-free assay. Western blotting and real-time RT-PCR revealed that salicylamide increased tyrosinase expression via transcriptional activation of the Mitf gene. Together, our results indicate that salicylamide could be used as an anti-hypopigmentation agent for skin and/or hair.

Keywords

Acknowledgement

We are grateful to Professor Keiko Ohashi-Kaneko of Tamagawa University and Mr. Takashi Nishio for their contributions to our work. We also thank Mr. Yuto Seki and Mr. Ryosuke Izumi for their technical assistance.

References

  1. Abdel-Rahman, M. S., Reddi, A. S., Curro, F. A., Turkall, R. M., Kadry, A. M. and Hansrote, J. A. (1991) Bioavailability of aspirin and salicylamide following oral co-administration in human volunteers. Can. J. Physiol. Pharmacol. 69, 1436-1442. https://doi.org/10.1139/y91-215
  2. Alhashimi, M., Mayhoub, A. and Seleem, M. N. (2019) Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 63, e01225-19.
  3. Alikhan, A., Felsten, L. M., Daly, M. and Petronic-Rosic, V. (2011) Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J. Am. Acad. Dermatol. 65, 473-491 https://doi.org/10.1016/j.jaad.2010.11.061
  4. Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J.-P. and Ballotti, R. (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835. https://doi.org/10.1083/jcb.142.3.827
  5. Butenas, S., Cawthern, K. M., van't Veer, C., DiLorenzo, M. E., Lock, J. B. and Mann, K. G. (2001) Antiplatelet agents in tissue factorinduced blood coagulation. Blood 97, 2314-2322. https://doi.org/10.1182/blood.V97.8.2314
  6. Chowdhury, K. H., Chowdhury, M. R., Mahmud, S., Tareq, A. M., Hanif, N. B., Banu, N., Reza, A. S. M. A., Emran, T. B. and Simal-Gandara, J. (2021) Drug repurposing approach against novel coronavirus disease (COVID-19) through virtual screening targeting SARS-CoV-2 main protease. Biology (Basel) 10, 2.
  7. Decher, H., Schweikardt, T. and Tuczek, F. (2006) The first crystal structure of tyrosinase: all questions answered? Angew. Chem. Int. Ed. Engl. 45, 4546-4550. https://doi.org/10.1002/anie.200601255
  8. Desborough, M. J. R. and Keeling, D. M. (2017) The aspirin story-from willow to wonder drug. Br. J. Haematol. 177, 674-683. https://doi.org/10.1111/bjh.14520
  9. Ezzedine, K., Lim, H. W., Suzuki, T., Katayama, I., Hamzavi, I., Lan, C. C. E., Goh, B. K., Anbar, T., Silva de Castro, C., Lee, A. Y., Parsad, D., van Geel, N., Le Poole, I. C., Oiso, N., Benzakri, L., Spritz, R., Gauthier, Y., Hann, S. K., Picardo, M. and Taieb, A.; Vitiligo Global Issue Consensus Conference Panelists (2012) Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Malanoma Res. 25, E1-E13.
  10. Jackson, I. J., Chambers, D. M., Tsukamoto, K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. and Hearing, V. (1992) A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 11, 527-535. https://doi.org/10.1002/j.1460-2075.1992.tb05083.x
  11. Kameyama, K., Takemura, T., Hamada, Y., Sakai, C., Kondoh, S., Nishiyama, S., Urabe, K. and Hearing V. J. (1993) Pigment production in murine melanoma cells in regulated by tyrosinase-related protein-1 (TRP-1), DOPAchrome tautomerase (TRP-2), and a melanogenic inhibitor. J. Invest. Dermatol. 100, 126-131. https://doi.org/10.1111/1523-1747.ep12462778
  12. Kim, D., Kim, H. J. and Jun, H. S. (2020) Polygonum multiflorum Thunb. extract stimulates melanogenesis by induction of COX2 expression through the activation of p38 MAPK in B16F10 mouse melanoma cells. Evid. Based Complement. Alternat. Med. 2020, 7642019.
  13. Korner, A. and Pawelek, J. (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217, 1163-1165. https://doi.org/10.1126/science.6810464
  14. Kumar, D., Rahman, H., Tyagi, E., Liu, T., Li, C., Lu, R., Lum, D., Holmen, S. L., Maschek, J. A., Cox, J. E., VanBrocklin, M. W. and Grossman, D. (2018) Aspirin suppresses PGE2 and activates AMP kinase to inhibit melanoma cell motility, pigmentation, and selective tumor growth in vivo. Cancer Prev. Res. 11, 629-642. https://doi.org/10.1158/1940-6207.CAPR-18-0087
  15. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  16. Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H. and Sugiyama, M. (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981-8990. https://doi.org/10.1074/jbc.M509785200
  17. Michalska-Malecka, K., Regucka, A., Spiewak, D., Sosnowska-Ponska, M. and Niewiem, A. (2016) Does the use of acetylsalicylic acid have an influence on our vision? Clin. Interv. Aging 11, 1567-1574. https://doi.org/10.2147/CIA.S115234
  18. Nicolaidou, E. and Katsambas, A. D. (2014) Pigmentation disorders: hyperpigmentation and hypopigmentation. Clin. Dermatol. 32, 66-72. https://doi.org/10.1016/j.clindermatol.2013.05.026
  19. Nishio, T., Usami, M., Awaji, M., Shinohara, S. and Sato, K. (2016) Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Mol. Cell. Biochem. 412, 101-110. https://doi.org/10.1007/s11010-015-2613-x
  20. Niu, C. and Aisa, H. A. (2017) Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo. Molecules 22, 1303. https://doi.org/10.3390/molecules22081303
  21. Piazuelo, E. and Lanas, A. (2015) NSAIDs and gastrointestinal cancer. Prostaglandins Other Lipid Mediat. 120, 91-96. https://doi.org/10.1016/j.prostaglandins.2015.06.001
  22. Sato, K., Takahashi, H., Iraha, R. and Toriyama, M. (2008) Down-regulation of tyrosinase expression by acetylsalicylic acid in murine B16 melanoma. Biol. Pharm. Bull. 31, 33-37. https://doi.org/10.1248/bpb.31.33
  23. Sato, K., Takahashi, H. and Toriyama, M. (2011) Depigmenting mechanism of NSAIDs on B16F1 melanoma cells. Arch. Dermatol. Res. 303, 171-180. https://doi.org/10.1007/s00403-010-1094-8
  24. Sato, K. and Toriyama, M. (2011) The inhibitory effect of non-steroidal anti-inflammatory drugs (NSAIDs) on the monophenolase and diphenolase activities of mushroom tyrosinase. Int. J. Mol. Sci. 12, 3998-4008. https://doi.org/10.3390/ijms12063998
  25. Scherschun, L., Kim, J. J. and Lim, H. W. (2001) Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J. Am. Acad. Dermatol. 44, 999-1003. https://doi.org/10.1067/mjd.2001.114752
  26. Seetha, A., Devaraj, H. and Sudhandiran, G. (2020) Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J. Biochem. Mol. Toxicol. 34, e22433. https://doi.org/10.1002/jbt.22433
  27. Shi, T., Fujita, K., Gong, J., Nakahara, M., Iwama, H., Liu, S, Yoneyama, H., Morishita, A., Nomura, T., Tani, J., Takuma, K., Tadokoro, T., Himoto, T., Oura, K., Tsutsui, K., Kobara, H. and Masaki, T. (2020) Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis. Oncol. Rep. 44, 457-468. https://doi.org/10.3892/or.2020.7630
  28. Steingrimsson, E., Copelan, N. G. and Jenkina, N. A. (2004) Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365-411. https://doi.org/10.1146/annurev.genet.38.072902.092717
  29. Tsukamoito, K., Jackson, I. J., Urabe, K., Montague, P. M. and Hearing, V. J. (1992) A second tyrosinase related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 11, 519-526. https://doi.org/10.1002/j.1460-2075.1992.tb05082.x
  30. Ullah, S., Chung, C. C. and Hyun, C.-G. (2020) Induction of melanogenesis by fosfomycin in B16F10 cells through the upregulation of P-JNK and P-p38 signaling pathways. Antibiotics (Basel) 9, 172. https://doi.org/10.3390/antibiotics9040172
  31. Weissmann, G. (1991) Aspirin. Sci. Am. 264, 84-90. https://doi.org/10.1038/scientificamerican0191-84
  32. Yiannakopoulou, E. C. (2015) Aspirin and NSAIDs for breast cancer chemoprevention. Eur. J. Cancer Prev. 24, 416-421. https://doi.org/10.1097/CEJ.0000000000000098
  33. Zappavigna, S., Cossu, A. M., Grimaldi, A., Bocchetti, M., Ferraro, G. A., Nicoletti, G. F., Filosa, R. and Caraglia, M. (2020) Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 21, 2605. https://doi.org/10.3390/ijms21072605