DOI QR코드

DOI QR Code

항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study

  • 최근기 (단국대학교 토목환경공학과) ;
  • 이정휘 (단국대학교 토목환경공학과) ;
  • 정철헌 (단국대학교 토목환경공학과) ;
  • 안동우 (도화엔지니어링 철도부) ;
  • 윤재용 (단국대학교 토목환경공학과)
  • Choi, Keunki (Department of Civil and Environmental Engineering, Dankook University) ;
  • Lee, Jungwhee (Department of Civil and Environmental Engineering, Dankook University) ;
  • Chung, Chul-Hun (Department of Civil and Environmental Engineering, Dankook University) ;
  • An, Dongwoo (Railroad Division, Dohwa Engineering Co., Ltd.) ;
  • Yoon, Jaeyong (Department of Civil and Environmental Engineering, Dankook University)
  • 투고 : 2021.04.21
  • 심사 : 2021.05.06
  • 발행 : 2021.06.30

초록

장교는 공공성이 매우 높은 사회기반시설물로 운용 중 안전성 확보가 필수적이며, 붕괴 또는 파손 시 신속한 대처가 필요하다. 사장교의 붕괴 또는 파손을 야기시킬 수 있는 원인은 크게 자연재난과 사회재난으로 분류할 수 있다. 이 중 사회재난에 속하는 충돌사고는 차량이 교량 하부구조인 교각에 충돌하는 사고, 항공기의 결함으로 인한 추락사고 등이 있을 것이며, 해상교량의 경우 주탑 하단에서의 선박 충돌사고가 있을 것이다. 본 연구에서는 수치해석적 접근법을 기반으로 항공기 충돌에 대한 사장교의 구조거동을 평가하는 절차를 제안하고, 충돌해석을 수행하여 절차의 타당성을 보였다. 제안된 절차에는 1) 적절한 항공기 충돌 시나리오 설정, 2) 사장교의 복잡한 거동 메커니즘을 고려한 구조 모델링, 3) 충돌해석을 통한 구조거동 평가가 포함된다. 해석 결과, 본 연구에서 설정한 시나리오는 대상 교량에 큰 영향을 미치지 못하는 것으로 나타났지만, 향후 다양한 시나리오를 통한 충돌해석을 수행한다면 교량에 심각한 손상을 일으키는 하중 위치 및 임계 하중 수준을 결정할 수 있을 것으로 판단한다. 본 연구에서 수행한 충돌해석 절차를 바탕으로 사장교에서 발생하는 항공기 충돌에 대한 간접적인 평가가 가능할 것으로 기대된다.

Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

키워드

과제정보

본 연구는 국토교통부 및 국토교통과학기술진흥원의 "케이블교량 글로벌 경쟁력 강화를 위한 전주기 엔지니어링 및 가설 공법 개발(No.21SCIP-B141250-06)" 과제의 일환으로 수행되었으며 이에 감사드립니다.

참고문헌

  1. Cao, R., Agrawal, A.K., Sherif, E.T., Xu, X., Wong, W. (2019) Heavy Truck Collision with Bridge Piers: Computational Simulation Study, J. Bridge Eng., 24(6):04019052, pp.1~12.
  2. Chung, C.H., Lee, J., Gil, J.H. (2014) Structural Performance Evaluation of a Precast Prefabricated Bridge Column under Vehicle Impact Loading, Struct. Infra. Eng., 10(6), pp.777~791. https://doi.org/10.1080/15732479.2013.767841
  3. EDF (1998) Rules for the Design and Contruction of Nuclear Power Plants, Rep.RCC-G85-Rev2., Electricite de France, France.
  4. Fan, W., Shen, D., Huang, X., Sun, Y. (2020) Reinforced Concrete Bridge Structures under Barge Impacts: FE Modeling, Dynamic Behaviors, and UHPFRC-based Strengthening, Ocean Eng., 216:108116, pp.1~18.
  5. Gholipour, G., Zhang, C., Mousavi, A.A. (2018) Effect of Axial Load on Nonlinear Response of RC Columns Subjected to Lateral Impact Load: Ship-Pier Collision, Eng. Fail. Anal., 91, pp.397~418. https://doi.org/10.1016/j.engfailanal.2018.04.055
  6. Gholipour, G., Zhang, C., Mousavi, A.A. (2020) Nonlinear Numerical Analysis and Progressive Damage Assessment of a Cable-Stayed Bridge Pier Subjected to Ship Collision, Mar. Struct., 69:102662, pp.1~21.
  7. Guo, X., Zhang, C., Chen, Z. (2020) Dynamic performance and damage evaluation of a scoured double-pylon cable-stayed bridge under ship impact, Eng. Struct., 216:110772, pp.1~17.
  8. Korea Airports Corporation(KAC) (2020) Statistics from 2019. 07.01.~2020.06.01. (Internet) Available: HYPERLINK "https//www.airport.co.kr/www/cms/frCon/index.do\?MENU_ID=1250"https://www.airport.co.kr/www/cms/frCon/index.do?MENU_ID=1250.
  9. Kim, J.H., Lee, N.H., Phan, D.H., Kim, S.B., Lee, K.W. (2010) Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load, J. Korea Concr. Inst., 22(4), pp.535~546. https://doi.org/10.4334/JKCI.2010.22.4.535
  10. Kim, W.S., Kim, K.K., Lee, J.H. (2014) A Comparison Study of Direct Impact Analysis of Vehicle to Concrete Pier and In-Direct Impact Analysis using Load-Time History Functions, J. Comput. Struct. Eng. Inst., 27(6), pp.533~542. https://doi.org/10.7734/COSEIK.2014.27.6.533
  11. KINS (2009) Evaluation and assess procedure of the aircraft impact, KINS/HR-986., Korea Institute of Nuclear Safety (KINS).
  12. KINS (2016) Safety Review Guidelines for Light Water Reactors, KINS/GE-N001., Korea Institute of Nuclear Safety(KINS).
  13. Lee, H.J., Kim, B.J. (2007) A Study on the Application of Material Properties in Ship Collision Analysis, Proc. Annual Meeting SNAK, pp.1050~1057.
  14. Lee, K.H. (2020a) Vessel Collision Analysis of an Underwater Slope using Coupled Eulerian Lagrangian Scheme 1: Development of Analysis Model, J. Comput. Struct. Eng. Inst. Korea, 33(1), pp.17~23. https://doi.org/10.7734/COSEIK.2020.33.1.17
  15. Lee, K.H. (2020b) Vessel Collision Analysis of an Underwater Slope using Coupled Eulerian Lagrangian Scheme 2: Parametric Study, J. Comput. Struct. Eng. Inst. Korea, 33(1), pp.25~33. https://doi.org/10.7734/COSEIK.2020.33.1.25
  16. LSTC (2020) LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation(LSTC), CA, USA.
  17. MOLIT (2016) Korean Highway Bridge Design Code(Limit State Design) for Cable-Supported Bridge, Ministry of Land, Infrastructure and Transport(MOLIT).
  18. Omar, I.A., Mohamed, A.E. (2017) Perfomance of Bridge Piers under Vehicle Collision, Eng. Struct., 140, pp.337~352. https://doi.org/10.1016/j.engstruct.2017.02.054
  19. Park, W., Park, J., Kim, H.K. (2015) Candidate Model Construction of a Cable-Stayed Bridge using Parameterised Sensitivity-Based Finite Element Model Updating, Struct. Infrastruct. Eng., 11, pp.1163~1177. https://doi.org/10.1080/15732479.2014.938662
  20. Park, K.S., Noh, N.H., Lee. J. (2014) Impact Performance Evaluation of MASH TL4 Bridge Barrier, Int. J. Crashworthness, 19(6), pp.624~638. https://doi.org/10.1080/13588265.2014.937558
  21. PTI (2007) Recommendation for Stay Cable Design, Testing and Installation., Post-Tensioning Institue(PTI).
  22. USNRC (1997) Factors to be Considered when Evaluating Sites, 10 CFR 100., United States Nuclear Regulatory Commision (USNRC).
  23. USNRC (2009) Aircraft Impact Assessment, 10 CFR 50.150., United States Nuclear Regulatory Commision(USNRC).
  24. Woo, K.S., Kim, J.I., Ra, J.S., Ahn, S.S. (2004) Dynamic Impact Load and Performance Evaluation of Concrete Rigid Barriers, KSCE J. Civil Eng., 24(5A), pp.1053~1063.
  25. Yoon, J. (2002) Finite Element Model Updating for Cable Stayed Bridge using Ambient Vibration, Ph.D Thesis, Seoul National University, Republic of Korea.
  26. Zhou, D., Li, R., Wang, J., Guo, C. (2017) Study on Impact Behavior and Impact Force of Bridge Pier Subjected to Vehicle Collision, Shock Vib., ID 7085392, pp.1~12.