DOI QR코드

DOI QR Code

Plant growth and fruit enlargement among different watermelon (Citrullus lanatus) cultivars in continuous chilling night temperature conditions

지속적인 야간 저온에 의한 수박 품종별 식물체 생장 및 과실 비대 양상

  • Oak Jin Lee (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Hee Ju Lee (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Seung Hwan Wi (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Tae Bok Kim (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Sang Gyu Kim (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Won Byoung Chae (Department of Environmental Horticulture, Dankook University)
  • 이옥진 (국립원예특작과학원 채소과) ;
  • 이희주 (국립원예특작과학원 채소과) ;
  • 위승환 (국립원예특작과학원 채소과) ;
  • 김태복 (국립원예특작과학원 채소과) ;
  • 김상규 (국립원예특작과학원 채소과) ;
  • 채원병 (단국대학교 환경원예조경학부)
  • Received : 2021.11.01
  • Accepted : 2021.11.29
  • Published : 2021.12.31

Abstract

Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is sensitive to low temperature and shows retarded growth under 10℃. Although early transplanting guarantees higher returns, it requires cost and labor to maintain the appropriate temperature for plant growth. Therefore, cultivars tolerant to chilling stress is necessary to reduce the cost and labor requirements. The purpose of this study is to analyze data on plant growth and fruit enlargement under continuous chilling night temperature to develop new cultivars tolerant to chilling temperature. Two cultivars expected to have chilling tolerance and another cultivar sensitive to chilling temperature were grown in greenhouses with chilling and optimal night temperature conditions. In the early growth stage after transplanting, the cultivars expected to have chilling tolerance showed better vine length, fresh weight and dry weight. However, one of the tolerant cultivars showed significantly lower vine length, leaf length and width, and petiole length than the sensitive cultivar during pollination period and later growth stage, showing genotype specific responses. The fruit length, width, and weight were also significantly lower in the tolerant cultivar. The fruit set ratio was significantly higher in the chilling sensitive cultivar than the two tolerant cultivars. These results suggest that the present chilling tolerant cultivars in watermelon were selected based on their performance in the early growth stage, and further studies on chilling tolerance in different growth and development stages are required to develop cultivars adapted to various forcing cultivation systems.

수박은 저온에 민감한 작물로 10℃ 이하에서는 생육이 지연되거나 억제된다. 농가에서는 소득 향상을 위해 정식시기를 앞당기고 있으나 촉성재배 작형에서 안정적으로 수박을 생산하기 위해서는 가온 혹은 보온이 필수적이기 때문에 비용 및 노동력의 부담이 크다. 이에 따라 저온 피해를 경감시킬 수 있는 재배기술과 촉성재배용 수박 품종개발이 요구되고 있으며 본 연구는 재배기간 중 지속적인 야간 저온에 의한 수박의 생장 및 과실 비대 양상 변화를 조사하여 내냉성 수박 품종개발의 기초자료로 활용하고자 수행하였다. 지속적인 야간 저온과 적온 환경에서 내냉성을 보일 것이라 예측되는 품종과 저온에 감수성을 보일 것으로 예측되는 품종을 재배하고 생육을 비교하였다. 정식 후 생육 초기에는 내냉성을 보일 것으로 예측하였던 품종이 저온 조건에서 덩굴 길이의 감소율이 작았으며, 생체중과 건물중은 증가하였다. 그러나 교배기와 생육 후기에는 내냉성 품종 중 하나에서 감수성 품종보다 덩굴 길이, 엽장, 엽폭, 엽병길이의 생장이 억제되어 자원 간에도 생육단계에 따라 생장반응의 차이가 존재하는 것을 확인하였다. 과장, 과폭, 과중 또한 내냉성 품종에서 통계적으로 유의하게 생육량이 낮았으며 착과율도 감수성 품종에서 높은 값을 보였다. 이는 품종의 육성목표와 선발기준이 정식 후 생육초기의 내냉성에 있기 때문인 것으로 판단되며, 다양한 저온환경에 적응할 수 있는 품종을 개발하기 위해 유묘기부터 과실 비대기까지의 생육단계에 따른 내냉성에 대한 추가 연구가 필요하다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(세부과제번호: PJ01260802)의 지원에 의해 이루어진 것임.

References

  1. Bidabadi SS and M Mehralian. 2020. Arbuscular mycorrhizal fungi inoculation to enhance chilling stress tolerance of watermelon. Gesunde Pflanzen 72:171-179. https://doi.org/10.1007/s10343-020-00499-2
  2. Cheng F, J Lu, M Gao, K Shi, Q Kong, Y Huang and Z Bie. 2016. Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Front. Plant Sci. 7:1-16.
  3. Erwin JE and RD Heins. 1995. Thermomorphogenic responses in stem and leaf development. HortScience 30:940-949. https://doi.org/10.21273/HORTSCI.30.5.940
  4. Guo FX, Y Chen, XR Li, SJ Xu, LZ An and DS Liu. 2007. Enhancement of low-temperature tolerance in Watermelon (Citrullus lanatus) seedlings by cool-hardening germination. Aust. J. Exp. Agr. 47:749-754. https://doi.org/10.1071/EA05130
  5. Hussain HA, S Hussain, A Khaliq, U Ashraf, SA Anjum, S Men and L Wang. 2018. Chilling and drought stresses in crop plants: Implications, cross talk and potential management opportunities. Front. Plant Sci. 9:1-21. https://doi.org/10.3389/fpls.2018.00001
  6. Ko HC, WM Lee, JJ Noh, KS Park, DK Park, KD Ko, JM Lee and YC Huh. 2012. Growth and development of watermelon plants grafted onto Citrullus rootstocks with resistance to fusarium wilt at two temperature regimes. J. Bio-Env. Con. 21: 33-38.
  7. Korea Rural Economic Institute (KREI). 2021. Agricultural Outlook 2021. Korea Rural Economic Institute. Naju, Korea.
  8. Korkmaz A and RJ Dufault. 2001. Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. I. Watermelon. J. Am. Soc. Hortic. Sci. 126:410-413. https://doi.org/10.21273/JASHS.126.4.410
  9. Kozik EU and TC Wehner. 2014. Tolerance of watermelon seedlings to low-temperature chilling injury. HortScience 49:240-243. https://doi.org/10.21273/HORTSCI.49.3.240
  10. Kwon JK, KH Kang, GB Kweon, YH Choi, NJ Kang and JH Lee. 2006. Effect of thermal tunnel covers and warm-water heating using excel pipe on the growth and wilting of greenhouse watermelon. Korean J. Hortic. Sci. Technol. 24:143-147.
  11. Kwon JK, GB Kweon, KH Kang, YH Choi, NJ Kang, JH Lee, HJ Jeong and JM Park. 2005. Effect of different rootstocks and double grafting on the fruit quality and withering occurrence of greenhouse watermelon. Korean J. Hortic. Sci. Technol. 23:382-387.
  12. Kwon SW, HG Chon, DC Choi and JC Kim. 2001. Incidence and visual symptoms of chilling injury in greenhouse watermelons. J. Bio-Env. Con. 10:36-41.
  13. Kwon SW, BR Ko and DG Bai. 2003. Changes in antioxidant enzymes and polyamines in response to low temperature chilling in watermelon plants. Acta Horticulturae 620:111-117. https://doi.org/10.17660/ActaHortic.2003.620.11
  14. Lim CS. 2010. Selection of cultivars and organic solvents to improve fruit set of greenhouse watermelon during cold period. J. Bio-Env. Con. 19:147-152.
  15. Lu J, MA Nawaz, N Wei, F Cheng and Z Bie. 2020. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. Hortic. Plant J. 6:49-60. https://doi.org/10.1016/j.hpj.2020.01.001
  16. Lyu X, S Chen, N Liao, J Liu, Z Hu, J Yang and M Zhang. 2019. Characterization of watermelon anther and its programmed cell death-associated events during dehiscence under cold stress. Plant Cell Reports 38:1551-1561. https://doi.org/10.1007/s00299-019-02466-2
  17. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2018. Seed Industry Statistics. Ministry of Agriculture, Food and Rural Affairs. Sejong, Korea.
  18. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2020. Statistics on Production of Greenhouse Vegetable and Greenhouse Facilities for Vegetable. Ministry of Agriculture, Food and Rural Affairs. Sejong, Korea.
  19. Noh JJ, JM Kim, S Sheikh, SG Lee, JH Lim, MH Seong and GT Jung. 2013. Effect of heat treatment around the fruit set region on growth and yield of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. Physiol. Mol. Biol. Plant. 19: 509-514. https://doi.org/10.1007/s12298-013-0174-6
  20. Ploeg AVD and E Heuvelink. 2005. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotech. 80:652-659. https://doi.org/10.1080/14620316.2005.11511994
  21. Rivero RM, JM Ruiz, PC Garcia, LR Lopez-Lefebre, E Sanchez and L Romero. 2001. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315-321. https://doi.org/10.1016/S0168-9452(00)00395-2
  22. Rivero RM, E Sanchez, JM Ruiz and L Romero. 2003. Influence of temperature on biomass, iron metabolism and some related bioindicators in tomato and watermelon plants. J. Plant Physiol. 160:1065-1071. https://doi.org/10.1078/0176-1617-00907
  23. Rudich J and A Peles. 1976. Sex expression in watermelon as affected by photoperiod and temperature. Sci. Hortic. 5:339-344. https://doi.org/10.1016/0304-4238(76)90129-1
  24. Rural Development Administration(RDA). 2020. Watermelon(The textbook for farming no. 104). Rural Development Administration. Jeonju, Korea.
  25. Seoul Agro-Fisheries and Food Corporation (SAFF). 2020. Analysis in Shipping Region in Korea. Seoul Agro-Fisheries and Food Corporation. Seoul. https://www.garak.co.kr/bbs/selectBbs.do
  26. Sheikh S, JJ Noh, MH Seong, GT Jung and JM Kim. 2015. Consequences of chilling stress on watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) germplasm lines at seedling stage. Hort. Environ. Biotech. 56:79-88. https://doi.org/10.1007/s13580-015-0174-2
  27. Sherzod R, EY Yang, MC Cho, SY Chae, JH Kim, CW Nam and WB Chae. 2019. Traits affecting low temperature tolerance in tomato and its application to breeding program. Plant Breed. Biotech. 7:350-359. https://doi.org/10.9787/PBB.2019.7.4.350
  28. Theocharis A, C Clement and EA Barka. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091-1105. https://doi.org/10.1007/s00425-012-1641-y
  29. Wei H, HS Ai, SY Fu, FZ Yuan, L Shan-Zhen and DZ Zhao. 2015. Effects of sub-optimal temperatures and low light intensity on growth and anti-oxidant enzyme activities in watermelon (Citrullus lnatus) Seedlings. J. Hortic. Sci. Biotech. 90:92-98. https://doi.org/10.1080/14620316.2015.11513158