DOI QR코드

DOI QR Code

Short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings following sudden low salinity exposure

급격한 저염분 노출에 따른 참돔 Pagrus major 치어의 단기 행동반응 및 내성 한계에 관한 연구

  • Sung Jin Yoon (Ulleungdo-Docdo Ocean Science Station, Korea Institute of Ocean Science & Technology)
  • 윤성진 (한국해양과학기술원 울릉도.독도해양연구기지)
  • Received : 2021.11.02
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

In this study, using a continuous behavior measurement technique, the short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings to sudden exposure to low salinity in a controlled environment were observed. The activity of the fingerlings suddenly exposed to 21.4, 17.3, and 9.8 psu increased temporarily at the initial exposure to show irregular swimming behavior, but then recovered a stable activity pattern through rapid salinity adaptation. However, the organisms suddenly exposed to 7.3 and 4.3 psu could not withstand the salinity stress, and their swimming behavior was severely disturbed and all individuals died within 48 hours. The findings suggest that red seabream underwent a temporary salinity stress process at the beginning of the exposure to concentrations of 10.0 psu or higher. At these concentrations, osmotic control was possible within at least 11 hours, so stable metabolic activity was also possible. However, organisms suddenly exposed to concentrations below 5.0 psu exceeded the tolerance to low salinity and the sublethal limit. In red seabream exposed to this concentration range, severe behavioral and metabolic disturbances were observed, and death was observed due to osmotic control failure. In conclusion, a salinity range of 5.0 to 10.0 psu can be predicted to correspond to a concentration range in which the osmotic control ability of the red seabream fingerlings is lost, and sub-lethal reactions occur.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1045925).

References

  1. Amin FB, T Farhana, GM Mostakim, MM Zahangir, MM Mishu and MS Islam. 2016. Behavioral and physiological stress responses of Java barb (Barbonymus gonionotus) to environmental salinity challenge. J. Aquacult. Eng. Fish. Res. 2:176-184.
  2. Boenf G and P Payan. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 130:411-423.
  3. Chevalier J, E Harscoet, M Keller, P Pandard, J Cachot and M Grote. 2015. Exploration of Daphnia behavioral effect profiles induced by a broad range of toxicants with different modes of action. Environ. Toxicol. Chem. 34:1760-1769. https://doi.org/10.1002/etc.2979
  4. Choi H, YH Park, JW Lee, KY Kwon and UK Hwang. 2020. Toxic effects of new anti-fouling agents (diuron and irgarol) on the embryogenesis and developmental delay of sea urchin, Hemicentrotus pulcherrimus. Korean J. Environ. Biol. 38:518-527. https://doi.org/10.11626/KJEB.2020.38.4.518
  5. Cong Y, Y Wang, M Zhang, F Jin, J Mu and Z Li. 2021. Lethal, behavioral, growth and developmental toxicities of alkyl-PAHs and non-alkyl PAHs to early-life stage of brine shrimp, Artemia parthenogenetica. Ecotox. Environ. Safe. 220:1-12.
  6. Creencia LA and T Noro. 2018. Effects of salinity on the growth and mucous cells of the abalone Haliotis diversicolor Reeve, 1846. Int. Aquat. Res. 10:179-189. https://doi.org/10.1007/s40071-018-0199-0
  7. Davenport. 1985. Osmotic control in marine animals. Symp. Soc. Exp. Biol. 39:207-244.
  8. De Azevedo RV, K dos Santos-Costa, KF de Oliveira, F FloresLopes, EA Teixeira-Lanna and LG Tavares-Braga. 2015. Responses of Nile tilapia to different levels of water salinity. Lat. Am. J. Aquat. Res. 43:828-835.
  9. Fukuda S, IJ Kang, J Moroishi and A Nakamura. 2010. The application of entropy for detecting behavioral responses in Japanese medaka (Oryzias latipes) exposed to different toxicants. Environ. Toxicol. 25:446-455. https://doi.org/10.1002/tox.20589
  10. Hamed SS, NS Jiddawi and POJ Bwathondi. 2016. Effect of salinity levels on growth, feed utilization, body composition and digestive enzymes activities of juvenile silver pompano Trachinotus blochii. Int. J. Fish. Aquat. Stud. 4:279-283.
  11. Harris LN, DJ Yurkowski, MJH Gilbert, BGT Else, PJ Duke, MMM Ahmed, RF Tallman, AT Fisk and JS Moore. 2020. Depth and temperature preference of anadromous Arctic char Salvelinus alpinus in the Kitikmeot Sea, a shallow and low-salinity area of the Canadian Arctic. Mar. Ecol. Prog. Ser. 634:175-197. https://doi.org/10.3354/meps13195
  12. Janech MG, WR Fitzgibbon, DW Ploth, ER Lacy and DH Miller. 2006. Effect of low environmental salinity on plasma composition and renal function on the Atlantic stingray, a euryhaline elasmobranch. Am. J. Physiol. -Renal Physiol. 291:F770-F780. https://doi.org/10.1152/ajprenal.00026.2006
  13. Kim JH, EH Jeon, SK Kim and YB Hur. 2021. Salinity-mediated changes in hematological parameters, stress, antioxidant responses, and acetylcholinesterase of juvenile olive flounders (Paralichthys olivaceus). Environ. Toxicol. Pharmacol. 83:1-9.
  14. Kim JH, HJ Park, IK Hwang, DH Kim, CW Oh, JS Lee and JC Kang. 2016. Alterations of hematological parameters, plasma constituents and antioxidant responses in the sablefish Anoplopoma fimbria depending on salinity. Korean J. Fish. Aquat. Sci. 49:830-837.
  15. Kim MJ, HK Lim and MH Jeong. 2015. Effects of low salinity acclimation on oxygen consumption in giant grouper, Epinephelus lanceolatus. J. Fish. Mar. Sci. Edu. 27:526-536.
  16. Kim WS, SJ Yoon, JW Kim, JA Lee and TW Lee. 2006. Metabolic response under different salinity and temperature conditions for glass eel Anguilla japonica. Mar. Biol. 149:1209-1215. https://doi.org/10.1007/s00227-006-0293-5
  17. Komoroske LM, KM Jeffries, RE Connon, J Dexter, M Hasenbein, C Verhille and NA fangue. 2016. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Ecol. Appl. 9:963-981.
  18. Kultz 2015. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218:1907-1914. https://doi.org/10.1242/jeb.118695
  19. Kwak IS, TS Chon, HM Jang, N Chung, JS Kim, SC Koh, SK Lee and YS Kim. 2002. Pattern recognition of the movement tracks of medaka (Oryzias latipes) in response to sub-lethal treatments of insecticide by using artificial neural networks. Environ. Pollut. 120:671-681. https://doi.org/10.1016/S0269-7491(02)00183-5
  20. Lee KW and YU Choi. 2016. The availability of tropical copepod Nitocra sp. for marine ecotoxicological evaluation. J. Korea Acad. Indust. Coop. Soc. 17:701-707.
  21. Lehtonen TK, BBM Wong and C kvarnemo. 2016. Effects of salinity on nest-building behavior in a marine fish. BMC Ecol. 16:1-9. https://doi.org/10.1186/s12898-015-0055-7
  22. Li M, XY Liu and Feng XZ. 2019. Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere 219:155-164. https://doi.org/10.1016/j.chemosphere.2018.12.011
  23. Lisboa V, IF Barcarolli, LA Sampaio and A Bianchini. 2015. Effects of salinity on survival, growth and biochemical parameters in juvenile lebranch mullet Mygil liza (Perciformes: Mugilidae). Neotrop. Ichthyol. 13:447-452. https://doi.org/10.1590/1982-0224-20140122
  24. Nahar F, W Haque, DA Ahsan and MG Mustafa. 2016. Effects of salinity changes on growth performance and survival of climbing perch, Anabas testudineus (Bloch, 1795). Dhaka Univ. J. Biol. Sci. 25:65-732.
  25. NIWA. 1998. Marine Fish (Rombosolea plebeian). Acute Toxicity Test Protocol. National Institute of Water and Atmospheric Research. Auckland, New Zealand. p. 29.
  26. Paiva F, NC Pauli and E Briski. 2020. Are juveniles as tolerance to salinity stress as adults? A case study of Northern European, Ponto-Caspian and North American species. Divers. Distrib. 26:1627-1641. https://doi.org/10.1111/ddi.13147
  27. Paterson MS and MR Meador. 1994. Effects of salinity on freshwater fishes in coastal plain drainage in the southeastern U.S. Rev. Fish. Sci. 2:95-121. https://doi.org/10.1080/10641269409388554
  28. Remen M. 2015. Effect of temperature on metabolism behaviour and oxygen requirements of Sparus aurata. Aquac. Environ. Interact. 7:115-123. https://doi.org/10.3354/aei00141
  29. Reubush KJ and AG Heath. 1996. Metabolic responses to acute handling by fingerling inland and anadromous striped bass. J. Fish Biol. 49:830-841. https://doi.org/10.1111/j.1095-8649.1996.tb00082.x
  30. Steele WB, LA Kristofco, J Corrales, GN Saari, SP Haddad, EP Gallagher, TJ Kavanagh, J Kostal, JB Zimmerman, A Voutchkova-Kostal, P Anastas and BW Brooks. 2018. Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Sci. Total Environ. 640-641:1587-1600. https://doi.org/10.1016/j.scitotenv.2018.05.402
  31. Sundell E, D Morgenroth, A Ekstrom, J Brijs, M Axelsson, A Grans and E Sandblom. 2021. Energetic savings and cardiovascular dynamics of marine euryhaline fish (Myoxocephalus Scorpius) in reduced salinity. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 191:301-311. https://doi.org/10.1007/s00360-020-01336-8
  32. USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms. United States Environment Protection Agency. Washington, D.C. p. 122.
  33. Velasco J, C Gutierrez -Canovas, M Botella -Cruz, D Sanchez-Fernandez, P Arribas, JA Carbonell, A Millan and S Pallares. 2018. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B-Biol. Sci. 374:20180011.
  34. Vij S, K Purushorthaman, PSR Sridatta and DR Jerry. 2020. Transcriptomic analysis of gill and kidney from Asian seabass (Lates calcarifer) acclimated to different salinities reveals pathways involved with euryhalinity. Genes 11:733.
  35. Xia C, L Fu, Z Liu, H Lin, L Chen and Y Liu. 2018. Aquatic toxic analysis by monitoring fish behavior using computer vision: A recent progress. J. Toxicol. 2018:1-11.
  36. Yuan F, Y Huang, X Chen and E Cheng. 2018. A biological sensor system using computer vision for water quality monitoring. IEEE Access 6:61535-61546. https://doi.org/10.1109/ACCESS.2018.2876336
  37. Yoon SJ. 2021. Critical low temperature and response of behavioral tolerance in red seabream Pagrus major fingerlings exposed to cold shock. JKAIS 22:575-584.
  38. Yoon SJ, CK Kim, JG Myoung and WS Kim. 2002. Comparison of oxygen consumption patterns between wild and cultured black rockfish Sebastes schlegeli. Fish. Sci. 69:43-49.
  39. Yoon SJ. 2016. Ecological effects of slag extracts on the initial life cycle of the rotifer Brachionus plicatilis and benthic copepod Tigriopus japonicas. Korean Soc. Mar. Environ. Safe. 22:490-499. https://doi.org/10.7837/kosomes.2016.22.5.490
  40. Yoon SJ and GS Park. 2011. Toxicity and behavioral changes of medaka (Oryzias latipes) by brine exposure. The Sea 16:39-51. https://doi.org/10.7850/JKSO.2011.16.1.039
  41. Yuan F, Y Huang, X Chen and AE Cheng. 2018. A biological sensor system using computer vision for water quality monitoring. IEEE Access 6:61535-61546. https://doi.org/10.1109/ACCESS.2018.2876336