DOI QR코드

DOI QR Code

Bioaccumulation of Ag and Zn in earthworms (Eisenia fetida) from soil contaminated with Ag and Zn nanoparticles using a radiotracer method

방사성동위원소 추적자 기법을 이용한 제조나노입자로 오염된 토양으로부터 지렁이(Eisenia fetida)의 은과 아연 축적 연구

  • Seung Ha Lee (Department of Oceanography, Chonnam National University) ;
  • Byeong-Gweon Lee (Department of Oceanography, Chonnam National University)
  • 이승하 (전남대학교 자연과학대학 해양학과) ;
  • 이병권 (전남대학교 자연과학대학 해양학과)
  • Received : 2021.12.07
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

In a radiotracer study, the bioaccumulation and efflux of metals in earthworms (Eisenia fetida) exposed to soil spiked with ZnO and Ag nanoparticles (AgNP) were compared to those exposed to soil spiked with ionic Zn and Ag. Additionally, the bioavailability and chemical mobility of nano- and ionic metals in the soil were estimated using the sequential extraction method and compared to the bioaccumulation factor(BAF). The BAF for ZnO (0.06) was 31 times lower than that for Zn ions (1.86), suggesting that ZnO was less bioavailable than the ionic form in contaminated soil. In contrast, the BAFs for two types of AgNPs coated with polyvinylpyrrolidone (0.12) or citrate (0.11) were comparable to those of ionic Ag (0.17). The sequential extraction of metals from the soil suggests that the chemically mobile fractions in the Zn ion treatment were higher(35%) than those (<20%) in the Ag ion treatment, which was consistent with the greater BAFs in the former than the latter. However, the chemical mobility in the ZnO treatments did not predict bioavailability. The efflux rates of Ag (3.2-3.8% d-1) in the worms were 2-3×those(1.2-1.7% d-1) for Zn.

본 연구에서는 방사성동위원소 추적자 실험을 통해서 산화아연 또는 두 종류의 은나노물질로 오염시킨 토양에서 지렁이(Eisenia fetida)의 금속축적과 제거율을 비교하였고, 이들을 이온상의 Ag와 Zn으로 처리한 대조구와 비교하였다. 추가적으로 토양의 금속을 다단계추출법(sequential extraction method)을 이용하여 금속의 결합 형태로부터 생물이용도(bioavailability)를 예측하고 실제 생물축적(BAF, bioaccumulation factor)과 비교하였다. ZnO 처리구의 BAF (0.06)는 아연이온 처리구 BAF (1.86)보다 31배 낮았는데, 이는 토양에서 ZnO의 생물전이가 매우 낮음을 제시해 준다. 한편, 은의 BAF는 금속의 오염 형태에에 무관하게 0.11~0.17의 범위를 보였다. 다단계추출법을 통해서 아연이온 처리구의 아연은 토양에 비교적 약한 결합을 하는 형태(mobile fraction)에 35% 분포하여 아연이온처리구 값(<20%)보다 높았고, 이는 전자의 더 높은 BAF와 일치한다. 하지만, ZnO 처리구의 다단계추출은 생물이용도나 BAF를 잘 예측하지 못했으며 이는 ZnO가 토양에서 아연이온과 지화학적으로 다른 거동을 하기 때문으로 추정된다. 지렁이 체내에 축적된 은의 제거율(3.2~3.8% d-1)은 아연의 제거율(1.2~1.7% d-1)보다 2~3배 더 높았다.

Keywords

Acknowledgement

심사위원들과 편집위원회의 의견과 제시 사항에 감사드리며 양경선 양의 도움에 고마움을 표현합니다.

References

  1. Adeel M, N Shakoor, M Shafiq, A Pavlicek, F Part, C Zafiu, A Raza, MA Ahmad, G Jilani, JC White, E-K Ehmoser, I Lynch, X Ming and Y Rui. 2021. A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environ. Pollut. 290:118041.
  2. Alloway BJ. 2008. Zinc in the Soil and Crop Nutrition. 2nd Edition. International Zinc Association. Durham, NC. p. 139.
  3. Arshi N, F Ahmed, S Kumar, MS Anwar, BH Koo and CG Lee. 2010. Comparative study of the Ag/PVP nano composites synthesized in water and in ethylene glycol. Curr. Appl. Phys. 11:S346-S349.
  4. Basta N and R Gradwohl. 2000. Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. J. Soil Contam. 9:149-164. https://doi.org/10.1080/10588330008984181
  5. Chinnapongse SL, RI MacCuspie and VA Hackley. 2011. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 409:2443-2450. https://doi.org/10.1016/j.scitotenv.2011.03.020
  6. Clark SB, WM Johnson, MA Malek, SM Serkiz and TG Hinton. 1996. A comparison of sequential extraction techniques to estimate geochemical controls on the mobility of fission product, actinide, and heavy metal contamination in soils. Radiochim. Acta 74:131-179.
  7. Cosin DJD, MP Ruiz and MH Garvin. 2002. Gut load and transit time in Hormogaster elisae (Oligochaeta, Hormogastridae) in laboratory cultures. Eur. J. Soil Biol. 38:43-46. https://doi.org/10.1016/S1164-5563(01)01122-0
  8. Croteau MN, SN Luoma and B Pellet. 2007. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers. Aquat. Toxicol. 83:116-125. https://doi.org/10.1016/j.aquatox.2007.03.016
  9. Dybowska AD, MN Croteau, SK Misra, D Berhanu, SN Luoma, P Christian, P O'Brien and E Valsami-Jones. 2011. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers. Environ. Pollut. 159:266-273. https://doi.org/10.1016/j.envpol.2010.08.032
  10. Gottschalk F, T Sonderer, RW Scholz and B Nowack. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, Fullerenes) for different regions. Environ. Sci. Technol. 43:9216-9222. https://doi.org/10.1021/es9015553
  11. He E, H Qiu, X Huang, CAM van Gestel and R Qiu. 2019. Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus. Envrion. Pollut. 245:510-518. https://doi.org/10.1016/j.envpol.2018.11.037
  12. Hou HC, P Westerhoff and JD Posner. 2013. Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ. Sci. - Processes Impacts 15:103-122. https://doi.org/10.1039/C2EM30686G
  13. Hu CW, M Li, YB Cui, DS Li, J Chen and LY Yang. 2010. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol. Biochem. 42:586-591. https://doi.org/10.1016/j.soilbio.2009.12.007
  14. ISO. 2012. Soil Quality Effects of Pollutants on Earthworms Part 1: Determination of Acute Toxicity to Eisenia fetida/Eisenia andrei. ISO 11268-1. International Organization for Standardization. Geneva, Switzerland.
  15. Jankovic NZ and DL Plata. 2019. Engineered nanomaterials in the context of global element cycles. Environ. Sci. - Nano 6:2697-2711. https://doi.org/10.1039/C9EN00322C
  16. Jezequel D, J Guenot, N Jouini and F Fievet. 1995. Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 10:77-83. https://doi.org/10.1557/JMR.1995.0077
  17. Khan FR, A Laycock, A Dybowska, F Larner, BD Smith, PS Rainbow, SN Luoma, M Rehkamper and E Valsami-Jones. 2013. Stable isotope tracer to determine uptake and efflux dynamics of ZnO Nano- and bulk particles and dissolved Zn to an estuarine snail. Environ. Sci. Technol. 47:8532-8539. https://doi.org/10.1021/es4011465
  18. Koen L and RJ Colin. 2001. Zinc and cadmium bodyburden in terrestrial oligochaetes: Use and significance in environmental risk assessment. Environ. Toxicol. Chem. 20:2067-2072. https://doi.org/10.1002/etc.5620200928
  19. Laycock A, M Diez-Ortiz, F Larner, A Dybowska, D Spurgeon, E Valsami-Jones, M Rehkamper and C Svendsen. 2015. Earthworm uptake routes and rates of ionic Zn and ZnO nanoparticles at realistic concentrations, traced using stable isotope labeling. Environ. Sci. Technol. 50:412-419.
  20. Li WM and WX Wang. 2013. Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing 65Zn tracer. Water Res. 47:895-902. https://doi.org/10.1016/j.watres.2012.11.018
  21. Ma H, PL Williams and SA Diamond. 2013. Ecotoxicity of manufactured ZnO nanoparticles - a review. Environ. Pollut. 172:76-85. https://doi.org/10.1016/j.envpol.2012.08.011
  22. Makama S, J Piella, A Undas, WJ Dimmers, R Peters, VF Puntes and NW van den Brink. 2016. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environ. Pollut. 218:870-878. https://doi.org/10.1016/j.envpol.2016.08.016
  23. Nahmani J, ME Hodson, S Devin and MG Vijer. 2009. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soil. Environ. Pollut. 157:2622-2628. https://doi.org/10.1016/j.envpol.2009.05.002
  24. Nowack B, FJ Ranville, S Diamond, JA Gallego-Urrea, C Metcalfe, J Rose, N Horne, AA Koelmans and SJ Klaine. 2013. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31:50-59.
  25. OECD. 1984. Guidelines for the Testing of Chemicals No. 207: Earthworm Acute Toxicity Test. Organization for Economic Co-operation and Development. Paris.
  26. OECD. 2016. Test No. 222: Earthworm Reproduction Test(Eisenia fetida/Eisenia andrei). Organization for Economic Co-operation and Development. Paris.
  27. Rocha TA, NC Mestre, SMT Saboia-Morais and MJ Bebianno. 2017. Environmental behavior and ecotoxicity of quantum dots at various trophic levels: a review. Environ. Int. 98:1-17. https://doi.org/10.1016/j.envint.2016.09.021
  28. Romero-Freire A, S Lofts, J Francisco, M Peinado and AM van Gestel. 2017. Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Esisennis Andrei. Environ. Toxicol. Chem. 36:137-146. https://doi.org/10.1002/etc.3512
  29. Salbu B, T Krekling and DH Oughton. 1998. Characterization of radioactive particles in the environment. Analyst 123:843-849. https://doi.org/10.1039/a800314i
  30. Shoults-Wilson WA, BC Reinsch, OV Tsyusko, PM Bertsch, GV Lowry and JM Unrine. 2011a. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 75:365-377. https://doi.org/10.2136/sssaj2010.0127nps
  31. Shoults-Wilson WA, BC Reinsch, OV Tsyusko, PM Bertsch, GV Lowry and JM Unrine. 2011b. Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in Earthworms (Eisenia fetida). Nanotoxicology 5:432-444. https://doi.org/10.3109/17435390.2010.537382
  32. Tessier A, PGC Campbell and M Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem. 51:844-851. https://doi.org/10.1021/ac50043a017
  33. Wang Y and B Nowack. 2018. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions. Environ. Pollut. 23:589-601. https://doi.org/10.1016/j.envpol.2018.01.004