DOI QR코드

DOI QR Code

Experimental Study on Rayleigh-Benard-Marangoni Natural Convection using IR Camera

열화상카메라를 이용한 Rayleigh-Benard-Marangoni 자연대류 실험 연구

  • 김정배 (한국교통대학교 자동차공학전공)
  • Received : 2021.03.17
  • Accepted : 2021.04.14
  • Published : 2021.06.30

Abstract

Rayleigh-Benard-Marangoni (RBM) convection have been artificially made for application of various engineering fields. For a relatively larger circular container, natural convection experiments were carried out to reveal and show the flow characteristics with engine oil (SAE30) using IR camera. IR camera has captured the temperature distribution on the free surface. From these experiments, it was confirmed that it was possible to quantitatively analyze the occurrence characteristics of RBM flow clearly from the thermal images taken with IR camera. As the aspect ratio increased, both the number of internal and external cavities increased. And found that the criteria of RBM flow generation proposed through previous experiments performed for small-sized containers are also very effective with the results on larger circular container.

Keywords

References

  1. F. Zuiderweg and A. Harmens, "he influence of surface phenomena on the performance of distillation columns", Chem. Eng. Sci., Vol. 9, 1958, pp. 89~103. https://doi.org/10.1016/0009-2509(58)80001-9
  2. W. B. Patberg, A. Koers, W. D. E. Steenge and A. A. H. Drinkenburg, "Effectiveness of mass transfer in a packed distillation column in relation to surface tension gradients", Chem. Eng. Sci., Vol. 38, No. 6, 1983, pp. 917~923. https://doi.org/10.1016/0009-2509(83)80013-X
  3. P. Calvert, "Inkjet printing for materials and devices", Chem. Mater., Vol. 13, No. 10, 2001, pp. 3299~3305. https://doi.org/10.1021/cm0101632
  4. H. Machrafi, A. Rednikov, P. Colinet and P.C. Dauby, "Benard instabilities in a binary-liquid layer evaporating into an inert gas", J. Colloid Interface Sci., Vol. 349, No. 1, 2010, pp. 331~353. https://doi.org/10.1016/j.jcis.2010.04.043
  5. D. Nield, "Surface tension and buoyancy effects in cellular convection", J. Fluid Mech., Vol. 19, No. 3, 1964, pp. 341~352. https://doi.org/10.1017/S0022112064000763
  6. E. L. Koshmeider and S. A. Prahl, "Surface-tension-driven Benard convection in small containers", J. Fluid Mech., Vol. 215, 1990, pp. 571~583. https://doi.org/10.1017/S0022112090002762
  7. M. F. Schatz and G. P. Neitzel, "Experiments on thermocapillary instabilities", Annu. Rev. Fluid Mech., Vol. 33, No. 1, 2001, pp. 93~127.
  8. J. Kim, R. J. Park, H. Y. Kim, S. W. Hong, J. H. Song and S. B. Kim, "High Ra number natural convection in a triangular pool with a heat generation", J. Computational Fluids Engineering, Vol. 16, No. 3, 2011, pp. 66~74. https://doi.org/10.6112/kscfe.2011.16.3.066
  9. S. Rahal, P. Cerisier and H. Azuma, "Benard-Marangoni convection in a small circular container: influence of the Biot and Prandtl numbers on pattern dynamics and free surface deformation", Exp. Fluids, Vol. 43, No. 4, 2007, pp. 547~554. https://doi.org/10.1007/s00348-007-0323-1
  10. R. Pasquetti, P. Cerisier, and C. Le Niliot, "Laboratory and numerical investigations on Benard-Marangoni convection in circular vessels", Phys. Fluids, Vol. 14, 2002, pp. 277. https://doi.org/10.1063/1.1424307
  11. J. Kim, K. S. Kang, S. B. Kim and H. D. Kim, "Analysis of natural convection heat transfer and solidification of a two-layered pool", J. Computational Fluids Engineering, Vol. 6, No. 1, 2001, pp. 1~13.
  12. H. C. Kuhlmann, "Thermocapillary flows in finite size systems", Math. Comput. Model., Vol. 20, 1994, pp. 145~173. https://doi.org/10.1016/0895-7177(94)90175-9
  13. H. C. Kuhlmann and U. Schoisswohl, "Flow instabilities in thermocapillary-buoyant liquid pools", J. Fluid Mech., Vol. 644, 2010, pp. 509~535. https://doi.org/10.1017/S0022112009992953
  14. E. L. Koschmieder, "Convection on a non-uniformly heated, rotating plane", J. Fluid Mech., Vol. 33, No. 3, 1968, pp. 515~527. https://doi.org/10.1017/S0022112068001485
  15. A. C. Rapier, "Forced convection heat transfer in a circular tube with nonuniform heat flux around the circumference", Int. J. Heat Mass Transfer, Vol. 15, No. 3, 1972, pp. 527~537. https://doi.org/10.1016/0017-9310(72)90215-3
  16. H. C. Kuhlmann and U. Schoisswohl, "Flow instabilities in thermocapillary-buoyant liquid pools", J. Fluid Mech., Vol. 644, 2010, pp. 509~535. https://doi.org/10.1017/S0022112009992953
  17. T. Gambaryan-Roisman, "Marangoni convec -tion, evaporation and interface deformation in liquid films on heated substrates with non-uniform thermal conductivity", Int. J. Heat Mass Transfer, Vol. 53, 2010, pp. 390~402. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.017
  18. R. E. Sakhy, K. E. Omari, Y. L. Guer and S. Blancher, "Rayleigh-Benard-Marangoni convection in an open cylindrical container heated by a non-uniform flux", Int. J. Thermal Sci., Vol. 86, 2014, pp. 198~209. https://doi.org/10.1016/j.ijthermalsci.2014.06.036
  19. A. Zebib, G. M. Homsy and E. Meiburg, "High Marangoni number convection in a square cavity", Phys. Fluids, Vol. 28, 1985, pp. 3467. https://doi.org/10.1063/1.865300
  20. H. Ben Hadid and B. Roux, "Thermocapillary convection in long horizontal layers of low-prandtl-number melts subject to a horizontal temperature gradient", J. Fluid Mech., Vol. 221, 1990, pp. 77~103. https://doi.org/10.1017/S0022112090003494
  21. J. F. Mercier and C. Normand, "Buoyant-thermocapillary instabilities of differentially heated liquid layers", Phys. Fluids, Vol. 8, 1996, pp. 1433~1445. https://doi.org/10.1063/1.868920