DOI QR코드

DOI QR Code

Analysis of Bus Signal Priority Effect by BRT Stop Types: Focusing on Hannuri-daero, Sejong

BRT 정류장 형태에 따른 버스 우선 신호 효과 분석: 세종시 한누리대로를 중심으로

  • Kim, Minji (Dept. of Transportation Eng., Univ. of Seoul) ;
  • Han, Yohee (Dept. of Transportation Eng., Univ. of Seoul) ;
  • Kim, Youngchan (Dept. of Transportation Eng., Univ. of Seoul)
  • 김민지 (서울시립대학교 교통공학과) ;
  • 한여희 (서울시립대학교 교통공학과) ;
  • 김영찬 (서울시립대학교 교통공학과)
  • Received : 2021.04.21
  • Accepted : 2021.05.06
  • Published : 2021.06.30

Abstract

Modern society is steadily implementing policies to encourage public transportation to cope with the growing traffic demand on limited roads. The expectation is rising for transit signal priority to ensure the speed of buses as the installation of the bus rapid transit(BRT) expands nationwide to secure the competitiveness of buses. On the other hand, the form of BRT stops without considering some aspects of bus operation may increase the number of stops on the bus, thereby reducing the effectiveness of bus signal priority applications. This study suggests the type of bus stop to increase the operation efficiency of buses by analyzing the bus signal priority effect according to the BRT station type using Hannuri-daero, Sejong. The bus signal priority is used to maximize the two-way bandwidth of passenger cars and buses. As a result of the application, the effectiveness of the bus signal priority at the stop causing the double stop of the bus was reduced drastically, and the efficiency of the bus signal priority was increased significantly after improvement. These results are expected to be used as basic data in the form of proper bus stops considering the aspects of traffic operation when designing BRT stops in new towns in the future.

현대 사회는 한정된 도로로 증가하는 교통 수요를 처리하기 위해 대중교통 장려 정책을 꾸준히 실시하고 있다. 버스의 경쟁력을 확보하기 위해 전국적으로 간선급행버스체계(BRT) 설치가 확대함에 따라 버스의 신속성 보장을 위한 우선 신호에 대한 기대가 높아지고 있다. 그러나 일부 버스 운영 측면을 고려하지 않은 BRT 정류장 형태는 버스의 정지횟수를 증가시켜 버스 우선 신호 적용 효과를 감소시킬 수 있다. 이에 본 연구는 세종시 한누리대로를 분석 대상지로 하여 BRT 정류장 형태에 따른 버스 우선 신호 효과를 분석함으로써 버스의 운영 효율을 높이기 위한 정류장 형태에 대해 제언하고자 한다. 버스 우선 신호는 일반 차량과 버스의 양방향 연동폭을 최대화하는 기법을 적용하였다. 적용 결과 버스의 이중 정차를 야기하는 정류장에서 버스 우선 신호의 효과가 급격히 감소하였으며 이를 개선 후 우선 신호의 효율이 상당히 증가하였다. 본 연구의 결과는 향후 신도시에 BRT 정류장 설계 시 교통운영 측면을 고려한 올바른 정류장 형태의 근거자료로써 활용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

This research was supported by a grant from the Development of S-BRT Priority Signal and Safety Management Technology Program funded by the Ministry of Land, Infrastructure, and Transport of Korea [grant number 21SBRT-C158062-02].

References

  1. Bae S. I., Lee K. B. and Jeon S. H.(2008), Technical Bulletin No. 15, Yooshin, pp.348-349.
  2. Bai Y., Li J., Li T., Yang L. and Lyu C.(2018), "Traffic Signal Coordination for Tramlines with Passive Priority Strategy," Hindawi Mathematical Problems in Engineering, vol. 2018, pp.1-14.
  3. Dai G., Wang H. and Wang W.(2016), "Signal Optimization and Coordination for Bus Progression Based on MAXBAND," KSCE Journal of Civil Engineering, vol. 20, no. 2, pp.890-898. https://doi.org/10.1007/s12205-015-1516-4
  4. Demetsky M. J. and Lin B.(1982), "Bus Stop Location and Design," Transportation Engineering Journal of ASCE, vol. 108, no. 4, pp.313-327. https://doi.org/10.1061/TPEJAN.0000991
  5. Garrow M. and Machemehl R.(1999), "Development and Evaluation of Transit Signal Priority Strategies," Journal of Public Transportation, vol. 2, no. 2, pp.65-90. https://doi.org/10.5038/2375-0901.2.2.4
  6. Gartner N. H., Assmann S., Lasaga F. and Hou D.(1991), "A Multiband Approach to Arterial Traffic Signal Optimization," Transportation Research 25B, pp.55-74.
  7. Hu J., Park B. B. and Lee Y. J.(2015), "Coordinated transit signal priority supporting transit progression under Connected Vehicle Technology," Transportation Research Part C: Emerging Technologies, vol. 55, pp.393-408. https://doi.org/10.1016/j.trc.2014.12.005
  8. Jeong Y. and Kim Y.(2014), "Tram Passive Signal Priority Strategy based on the MAXBAND Model," KSCE Journal of Civil Engineering, vol. 18, no. 5, pp.1518-1527. https://doi.org/10.1007/s12205-014-0159-1
  9. Kim H., Cheng Y. and Chang G. L.(2019), "Variable Signal Progression Bands for Transit Vehicles Under Dwell Time Uncertainty and Traffic Queues," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 1, pp.109-122. https://doi.org/10.1109/tits.2018.2801567
  10. Kim M., Han Y. and Kim Y.(2021), "Developing Methodology for Maximizing Two-way Bandwidth of Bus Stop Units Using MAXBAND LP2 Model," The 84th Conference of Korean Society of Transportation, p.31.
  11. Kim W. and Rilett L.(2005), "Improved Transit Signal Priority System for Networks with Nearside Bus Stops," Transportation Research Record: Journal of the Transportation Research Board, vol. 1925, no. 1, pp.205-214. https://doi.org/10.1177/0361198105192500121
  12. Little J., Kelson M. and Gartner N. H.(1981), "MAXBAND: A Versatile Program for Setting Signals on Arteries and Triangular Networks," Transportation Research Record, vol. 795, pp.40-46.
  13. Ministry of Construction & Transportation(2005), Bus Rapid Transit Manual, p.1.
  14. Ministry of Construction & Transportation(2010), Bus Rapid Transit(BRT) Design Guidelines, p.86.
  15. Roger P. R., Elena S. P. and William R. M.(2011), Traffic Engineering Fourth Edition, p.636.
  16. Smith H. R., Hemily B., Ivanovic M. and Fleming G.(2005), Transit Signal Priority (TSP): A Planning and Implementation Handbook, ITS America, p.7.
  17. Wang R., Seo M., Nakamura F., Okamura T. and Tanaka S.(2013), "A Performance Evaluation of Bus Stop Placements near a Signalized Intersection by a Microscopic Traffic Simulation," Journal of the Eastern Asia Society for Transportation Studies, vol. 10, pp.1270-1280.
  18. Zhang C., Xie Y., Gartner N. H., Stamatiadis C. and Arsava T.(2015), "AM-Band: An Asymmetrical Multi-Band Model for Arterial Traffic Signal Coordination," Transportation Research Part C, vol. 58, pp.515-531. https://doi.org/10.1016/j.trc.2015.04.014