DOI QR코드

DOI QR Code

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin (Research Institute of Real and Complex Manifolds (RIRCM) Kyungpook National University) ;
  • Suh, Young Jin (Department of Mathematics & RIRCM Kyungpook National University)
  • Received : 2020.06.02
  • Accepted : 2020.10.12
  • Published : 2021.07.01

Abstract

In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

Keywords

Acknowledgement

The first author was supported by grant Proj. No. NRF-2019-R1I1A1A-01050300 and the second author by grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea.

References

  1. J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatsh. Math. 137 (2002), no. 2, 87-98. https://doi.org/10.1007/s00605-001-0494-4
  2. J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math. 24 (2013), no. 7, 1350050, 18 pp. https://doi.org/10.1142/S0129167X1350050X
  3. J. Berndt and Y. J. Suh, Contact hypersurfaces in Kahler manifolds, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2637-2649. https://doi.org/10.1090/S0002-9939-2015-12421-5
  4. A. L. Besse, Einstein Manifolds, reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
  5. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/gsm/034
  6. I. Jeong, H. Lee, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type, Acta Math. Hungar. 125 (2009), no. 1-2, 141-160. https://doi.org/10.1007/s10474-009-8245-4
  7. I. Jeong, J. D. P'erez, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator, Acta Math. Hungar. 122 (2009), no. 1-2, 173-186. https://doi.org/10.1007/s10474-008-8004-y
  8. I. Jeong, Y. J. Suh, and C. Woo, Real hypersurfaces in complex two-plane Grassmannians with recurrent structure Jacobi operator, in Real and Complex Submanifolds, 267-278, Springer Proc. Math. Stat., 106, Springer, Tokyo, 2014. https://doi.org/10. 1007/978-4-431-55215-4_23
  9. U.-H. Ki, J. D. P'erez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44 (2007), no. 2, 307-326. https://doi.org/10.4134/JKMS.2007.44.2.307
  10. S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), no. 1, 79-96. https://doi.org/10.1016/j.difgeo.2007.11.004
  11. A. W. Knapp, Lie Groups Beyond an Introduction, second edition, Progress in Mathematics, 140, Birkhauser Boston, Inc., Boston, MA, 2002.
  12. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, reprint of the 1969 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996.
  13. H. Lee, J. D. P'erez, and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. London Math. Soc. 52 (2020), 1122-1133. http://doi.org/10.1112/blms.12386
  14. H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463-474. https://doi.org/10.1016/j.geomphys.2017.10.003
  15. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364. https://doi.org/10.2307/1998631
  16. J. D. Perez, On the structure vector field of a real hypersurface in complex quadric, Open Math. 16 (2018), no. 1, 185-189. https://doi.org/10.1515/math-2018-0021
  17. J. D. Perez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), no. 1-2, 157-168. https://doi.org/10.5486/pmd.2019.8424
  18. J. D. Perez and F. G. Santos, Real hypersurfaces in complex projective space with recurrent structure Jacobi operator, Differential Geom. Appl. 26 (2008), no. 2, 218-223. https://doi.org/10.1016/j.difgeo.2007.11.015
  19. J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel, Differential Geom. Appl. 22 (2005), no. 2, 181-188. https://doi.org/10.1016/j.difgeo.2004.10.005
  20. J. D. Perez and Y. J. Suh, Derivatives of the shape operator of real hypersurfaces in the complex quadric, Results Math. 73 (2018), no. 3, Paper No. 126, 10 pp. https://doi.org/10.1007/s00025-018-0888-4
  21. H. Reckziegel, On the geometry of the complex quadric, in Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.
  22. A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 (1986), no. 2, 283-286. https://doi.org/10.2307/2045699
  23. A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z. 192 (1986), no. 4, 627-635. https://doi.org/10.1007/BF01162709
  24. B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246-266. https://doi.org/10.2307/1970441
  25. Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math. 25 (2014), no. 6, 1450059, 17 pp. https://doi.org/10.1142/S0129167X14500591
  26. Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb invariant shape operator, Differential Geom. Appl. 38 (2015), 10-21. https://doi.org/10.1016/j.difgeo.2014.11.003
  27. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886-905. https://doi.org/10.1016/j.aim.2015.05.012
  28. Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. (9) 106 (2016), no. 3, 393-410. https://doi.org/10.1016/j.matpur.2016.02.015
  29. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel structure Jacobi operator, Differential Geom. Appl. 51 (2017), 33-48. https://doi.org/10.1016/j.difgeo.2017.01.001
  30. Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math. 59 (2016), no. 11, 2185-2198. https://doi.org/10.1007/s11425-016-0067-7