DOI QR코드

DOI QR Code

Transient Electronics and Biodegradable Encapsulation Technologies

트랜지언트 전자소자 및 생분해성 봉지막 기술

  • Moon, Joon Min (Department of Materials Science and Engineering, Seoul National University) ;
  • Kang, Seung-Kyun (Department of Materials Science and Engineering, Seoul National University)
  • 문준민 (서울대학교 재료공학부) ;
  • 강승균 (서울대학교 재료공학부)
  • Received : 2021.05.31
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

Since transient electronic devices can operate under harsh conditions such as electrolytic solutions or inside the body, and be removed by hydrolysis after operation, they can replace conventional electronic devices in various research areas like biomedical implantable devices. Moreover, transient electronic devices that can dissolve in water and enzymes are the focus of the new concept of green technology, which can solve electrical waste issues. However, the surroundings of transient electronic devices can deteriorate internal device components. Thus, an encapsulation strategy is introduced for stable operation in solution by shielding the outside of a device with a passive barrier. This article summarizes recent research trends in transient electronic devices, including their background, dissolution behavior, and encapsulation strategies to enhance reliability by blocking water permeation.

트랜지언트 전자소자는 전해질 수용액이나 체내와 같은 거친 환경에서도 작동이 가능하며 동작 이후 가수분해되어 스스로 제거되기 때문에 기존의 전자소자를 대체하여 의료 목적의 체내 삽입 소자 등 다양한 연구 영역에서 활용되고 있다. 또한 물과 효소만으로 제거가 가능한 트랜지언트 전자소자는 최근 대두되고 있는 전자 쓰레기와 환경 오염 문제를 해결할 수 있는 신개념 그린 테크놀로지로 많은 주목을 받고 있다. 하지만, 트랜지언트 전자소자의 작동 환경인 수용액과 체내는 지속적은 물 침투를 통해 소자 내 핵심 부품을 열화시킨다. 이러한 환경 내 안정한 동작을 위하여 수동적 보호 기능을 가진 피막이 소자 외부를 감싸는 봉지막 전략이 도입되었다. 본 논문에서는 트랜지언트 전자소자의 등장 배경과 분해 거동을 포함한 최근 연구 동향과 작동 환경 내 물 침투를 방지하여 동작 신뢰도를 향상시킬 수 있는 봉지막 전략에 관하여 정리하였다.

Keywords

Acknowledgement

이 연구는 서울대학교 신임교수 연구정착금으로 지원되는 연구비와 서울대학교 창의선도 신진연구자 지원사업의 지원을 받아 수행되었음

References

  1. A. J. Jara, M. A. Zamora and A. F. G. Skarmeta, "An internet of things-based personal device for diabetes therapy management in ambient assisted living (AAL)", Pers. Ubiquit. Comput., 15(4), 431 (2011). https://doi.org/10.1007/s00779-010-0353-1
  2. I. Lee and K. Lee, "The Internet of Things (IoT): Applications, investments, and challenges for enterprises", Bus. Horiz., 58(4), 431 (2015). https://doi.org/10.1016/j.bushor.2015.03.008
  3. M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research Opportunities", IEEE Internet Things J., 3(6), 854 (2016). https://doi.org/10.1109/JIOT.2016.2584538
  4. X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. Lee, S. Kim, P. Gutruf, C. Zhang, Y. Xue, Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Jeong, Y. Yu, J. Cornman, C. Tan, B. Kim, K. Lee, X. Feng, Y. Huang and J. A. Rogers, "Skin-integrated wireless haptic interfaces for virtual and augmented reality", Nature, 575 (7783), 473 (2019). https://doi.org/10.1038/s41586-019-1687-0
  5. J. Hu, P. Bhowmick, F. Arvin, A. Lanzon and B. Lennox, "Cooperative Control of Heterogeneous Connected Vehicle Platoons: An Adaptive Leader-Following Approach", IEEE Robot. Autom. Lett., 5(2), 977 (2020). https://doi.org/10.1109/lra.2020.2966412
  6. Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang and J. Xiao, "Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite", Sci. Adv., 4(2), eaaq0508 (2018). https://doi.org/10.1126/sciadv.aaq0508
  7. J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, "Life time reliability: Toward an architectural solution", IEEE Micro, 25(3), 70 (2005) https://doi.org/10.1109/MM.2005.54
  8. D. H. Lee, C. H. Kim, J. Youn and J. Jeong, "Evaluation methods for long-term reliability of polymer-based implantable biomedical devices", Biomed. Eng. Lett., (2021).
  9. S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner, "Condition Monitoring for Device Reliability in Power Electronic Converters: A Review", IEEE Trans. Power Electron., 25(11), 2734 (2010). https://doi.org/10.1109/TPEL.2010.2049377
  10. H. Zhang, "Reliability and lifetime prediction of LED drivers", 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS) (2017).
  11. J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers, "The case for lifetime reliability-aware microprocessors", Proceedings. 31st Annual International Symposium on Computer Architecture (2004).
  12. D. Ibanescu, D. Cailean Gavrilescu, C. Teodosiu and S. Fiore, "Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries", Waste. Manag., 73, 39 (2018). https://doi.org/10.1016/j.wasman.2017.12.022
  13. B. Debnath, R. Roychoudhuri and S. K. Ghosh, "E-Waste Management - A Potential Route to Green Computing", Procedia Environ. Sci., 35, 669 (2016). https://doi.org/10.1016/j.proenv.2016.07.063
  14. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature, 432(7016), 488 (2004). https://doi.org/10.1038/nature03090
  15. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis and A. Javey, "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis", Nature, 529(7587), 509 (2016). https://doi.org/10.1038/nature16521
  16. S. W. Hwang, D. H. Kim, H. Tao, T. i. Kim, S. Kim, K. J. Yu, B. Panilaitis, J. W. Jeong, J.-K. Song, F. G. Omenetto and J. A. Rogers, "Materials and Fabrication Processes for Transient and Bioresorbable High-Performance Electronics", Adv. Funct. Mater., 23(33), 4087 (2013). https://doi.org/10.1002/adfm.201300127
  17. S. K. Kang, L. Yin and C. Bettinger, "The emergence of transient electronic devices", MRS Bull., 45(2), 87 (2020). https://doi.org/10.1557/mrs.2020.19
  18. S. W. Hwang, H. Tao, D. H. Kim, H. Cheng, J. K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y. S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto and J. A. Rogers, "A Physically Transient Form of Silicon Electronics", Science, 337(6102), 1640 (2012). https://doi.org/10.1126/science.1226325
  19. S. W. Hwang, X. Huang, J. H. Seo, J. K. Song, S. Kim, S. Hage-Ali, H. J. Chung, H. Tao, F. G. Omenetto, Z. Ma and J. A. Rogers, "Materials for bioresorbable radio frequency electronics", Adv. Mater., 25(26), 3526 (2013). https://doi.org/10.1002/adma.201300920
  20. C. H. Lee, H. Kim, D. V. Harburg, G. Park, Y. Ma, T. Pan, J. S. Kim, N. Y. Lee, B. H. Kim, K. I. Jang, S. K. Kang, Y. Huang, J. Kim, K. M. Lee, C. Leal and J. A. Rogers, "Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants", NPG Asia Mater, 7 (2015).
  21. S. K. Kang, R. K. Murphy, S. W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K. M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray and J. A. Rogers, "Bioresorbable silicon electronic sensors for the brain", Nature, 530(7588), 71 (2016). https://doi.org/10.1038/nature16492
  22. K. J. Yu, D. Kuzum, S. W. Hwang, B. H. Kim, H. Juul, N. H. Kim, S. M. Won, K. Chiang, M. Trumpis, A. G. Richardson, H. Cheng, H. Fang, M. Thomson, H. Bink, D. Talos, K. J. Seo, H. N. Lee, S. K. Kang, J. H. Kim, J. Y. Lee, Y. Huang, F. E. Jensen, M. A. Dichter, T. H. Lucas, J. Viventi, B. Litt and J. A. Rogers, "Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex", Nat. Mater., 15(7), 782 (2016). https://doi.org/10.1038/nmat4624
  23. J. Koo, S. B. Kim, Y. S. Choi, Z. Xie, A. J. Bandodkar, J. Khalifeh, Y. Yan, H. Kim, M. K. Pezhouh, K. Doty, G. Lee, Y.-Y. Chen, S. M. Lee, D. D'Andrea, K. Jung, K. Lee, K. Li, S. Jo, H. Wang, J.-H. Kim, J. Kim, S.-G. Choi, W. J. Jang, Y. S. Oh, I. Park, S. S. Kwak, J.-H. Park, D. Hong, X. Feng, C.-H. Lee, A. Banks, C. Leal, H. M. Lee, Y. Huang, C. K. Franz, W. Z. Ray, M. MacEwan, S.-K. Kang and J. A. Rogers, "Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion", Sci. Adv., 6(35), eabb1093 (2020). https://doi.org/10.1126/sciadv.abb1093
  24. Y. S. Choi, Y. Y. Hsueh, J. Koo, Q. Yang, R. Avila, B. Hu, Z. Xie, G. Lee, Z. Ning, C. Liu, Y. Xu, Y. J. Lee, W. Zhao, J. Fang, Y. Deng, S. M. Lee, A. Vazquez-Guardado, I. Stepien, Y. Yan, J. W. Song, C. Haney, Y. S. Oh, W. Liu, H. J. Yoon, A. Banks, M. R. MacEwan, G. A. Ameer, W. Z. Ray, Y. Huang, T. Xie, C. K. Franz, S. Li and J. A. Rogers, "Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration", Nat. Commun., 11(1), 5990 (2020). https://doi.org/10.1038/s41467-020-19660-6
  25. S. K. Kang, J. Koo, Y. K. Lee and J. A. Rogers, "Advanced Materials and Devices for Bioresorbable Electronics", Acc. Chem. Res., 51(5), 988 (2018). https://doi.org/10.1021/acs.accounts.7b00548
  26. S. K. Kang, S.-W. Hwang, H. Cheng, S. Yu, B. H. Kim, J. H. Kim, Y. Huang and J. A. Rogers, "Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics", Adv. Funct. Mater., 24(28), 4427 (2014). https://doi.org/10.1002/adfm.201304293
  27. R. Singh, M. J. Bathaei, E. Istif and L. Beker, "A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation", Adv. Healthc. Mater., 9(18), e2000790 (2020).
  28. S. Watanabe, N. Nakayama and T. Ito, "Homogeneous hydrogen-terminated Si(111) surface formed using aqueous HF solution and water", Appl. Phys. Lett., 59(12), 1458 (1991). https://doi.org/10.1063/1.105287
  29. L. Yin, A. B. Farimani, K. Min, N. Vishal, J. Lam, Y. K. Lee, N. R. Aluru and J. A. Rogers, "Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics", Adv. Mater., 27(11), 1857 (2015). https://doi.org/10.1002/adma.201404579
  30. Y. K. Lee, K. J. Yu, E. Song, A. Barati Farimani, F. Vitale, Z. Xie, Y. Yoon, Y. Kim, A. Richardson, H. Luan, Y. Wu, X. Xie, T. H. Lucas, K. Crawford, Y. Mei, X. Feng, Y. Huang, B. Litt, N. R. Aluru, L. Yin and J. A. Rogers, "Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics", ACS Nano, 11(12), 12562 (2017). https://doi.org/10.1021/acsnano.7b06697
  31. S. J. Sofia, V. Premnath and E. W. Merrill, "Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption", Macromolecules, 31(15), 5059 (1998). https://doi.org/10.1021/ma971016l
  32. P. M. Dove, N. Han and J. J. De Yoreo, "Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior", Proc. Natl. Acad. Sci., 102(43), 15357 (2005). https://doi.org/10.1073/pnas.0507777102
  33. S. W. Hwang, G. Park, H. Cheng, J. K. Song, S. K. Kang, L. Yin, J. H. Kim, F. G. Omenetto, Y. Huang, K. M. Lee and J. A. Rogers, "25th anniversary article: materials for high-performance biodegradable semiconductor devices", Adv. Mater., 26(13), 1992 (2014). https://doi.org/10.1002/adma.201304821
  34. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I. Orientation Dependence and Behavior of Passivation Layers", J. Electrochem. Soc., 137(11), 3612 (1990). https://doi.org/10.1149/1.2086277
  35. W. Worley, "Dissolution kinetics and mechanisms in quartzand grainite-water systems," in Ph.D. Thesis, pp 9-231, Massachusetts Institute of Technology, Massachusetts (1994).
  36. J. P. Icenhower and P. M. Dove, "The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength", Geochim. Cosmochim. Acta., 64(24), 4193 (2000). https://doi.org/10.1016/S0016-7037(00)00487-7
  37. S. W. Hwang, C. H. Lee, H. Cheng, J. W. Jeong, S. K. Kang, J. H. Kim, J. Shin, J. Yang, Z. Liu, G. A. Ameer, Y. Huang and J. A. Rogers, "Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors", Nano Lett, 15(5), 2801 (2015). https://doi.org/10.1021/nl503997m
  38. R. Li, H. Cheng, Y. Su, S. W. Hwang, L. Yin, H. Tao, M. A. Brenckle, D. H. Kim, F. G. Omenetto, J. A. Rogers and Y. Huang, "An Analytical Model of Reactive Diffusion for Transient Electronics", Adv. Funct. Mater., 23(24), 3106 (2013). https://doi.org/10.1002/adfm.201203088
  39. R. C. Jaeger, Introduction to microelectronic fabrication, 2nd Ed., Prentice Hall, NJ (2002)
  40. M. F. Ceiler, P. A. Kohl and S. A. Bidstrup, "Plasma-Enhanced Chemical Vapor Deposition of Silicon Dioxide Deposited at Low Temperatures", J. Electrochem. Soc., 142(6), 2067 (1995). https://doi.org/10.1149/1.2044242
  41. D. S. Allam and K. E. G. Pitt, "The structure of evaporated silicon oxide films and its effect on the electrical and optical properties", Thin Solid Films, 1(4), 245 (1968). https://doi.org/10.1016/0040-6090(68)90044-8
  42. L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S. K. Kang, Y. Su, R. Li, Y. Huang and J. A. Rogers, "Dissolvable Metals for Transient Electronics", Adv. Funct. Mater., 24(5), 645 (2014). https://doi.org/10.1002/adfm.201301847
  43. J. Y. Bae, E. J. Gwak, G. S. Hwang, H. W. Hwang, D. J. Lee, J. S. Lee, Y. C. Joo, J. Y. Sun, S. H. Jun, M. R. Ok, J. Y. Kim and S. K. Kang, "Biodegradable Metallic Glass for Stretchable Transient Electronics", Adv. Sci., 8(10) (2021).
  44. O. Fruhwirth, G. W. Herzog, I. Hollerer and A. Rachetti, "Dissolution and hydration kinetics of MgO", Surf. Technol., 24(3), 301 (1985). https://doi.org/10.1016/0376-4583(85)90080-9
  45. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head and D. L. Kaplan, "In vivo degradation of three-dimensional silk fibroin scaffolds", Biomaterials, 29(24-25), 3415 (2008). https://doi.org/10.1016/j.biomaterials.2008.05.002
  46. B. Liu, Y. W. Song, L. Jin, Z. J. Wang, D. Y. Pu, S. Q. Lin, C. Zhou, H. J. You, Y. Ma, J. M. Li, L. Yang, K. L. Sung and Y. G. Zhang, "Silk structure and degradation", Colloids Surface B, 131, 122 (2015). https://doi.org/10.1016/j.colsurfb.2015.04.040
  47. S. W. Hwang, J. K. Song, X. Huang, H. Cheng, S. K. Kang, B. H. Kim, J. H. Kim, S. Yu, Y. Huang and J. A. Rogers, "High-performance biodegradable/transient electronics on biodegradable polymers", Adv. Mater., 26(23), 3905 (2014). https://doi.org/10.1002/adma.201306050
  48. S. Santra, P. K. Guha, S. Z. Ali, I. Haneef and F. Udrea, "Silicon on Insulator Diode Temperature Sensor- A Detailed Analysis for Ultra-High Temperature Operation", IEEE Sens. J., 10(5), 997 (2010). https://doi.org/10.1109/JSEN.2009.2037822
  49. L. Hall-Stoodley, J. W. Costerton and P. Stoodley, "Bacterial biofilms: from the natural environment to infectious diseases", Nat. Rev. Microbiol., 2(2), 95 (2004). https://doi.org/10.1038/nrmicro821
  50. J. R. Daube, D. I. Rubin, Clinical Neurophysiology, 3rd Ed., Oxford University Press (2009)
  51. A. L. Chamis, G. E. Peterson, C. H. Cabell, G. R. Corey, R. A. Sorrentino, R. A. Greenfield, T. Ryan, L. B. Reller and V. G. Fowler, Jr., "Staphylococcus aureus bacteremia in patients with permanent pacemakers or implantable cardioverterdefibrillators", Circulation, 104(9), 1029 (2001). https://doi.org/10.1161/hc3401.095097
  52. K. Ott, E. Tarlov, R. Crowell and N. Papadakis, "Retained intracranial metallic foreign bodies", J Neurosurg., 44(1), 80 (1976). https://doi.org/10.3171/jns.1976.44.1.0080
  53. C. M. Boutry, H. Chandrahalim, P. Streit, M. Schinhammer, A. C. Hanzi and C. Hierold, "Towards biodegradable wireless implants", Philos. Trans. A. Math. Phys. Eng. Sci., 370(1967), 2418 (2012).
  54. G. V. Vajramani, G. Jones, R. Bayston and W. P. Gray, "Persistent and intractable ventriculitis due to retained ventricular catheters", Br. J. Neurosurg., 19(6), 496 (2005). https://doi.org/10.1080/02688690500495299
  55. M. Maytin, L. M. Epstein and C. A. Henrikson, "Lead extraction is preferred for lead revisions and system upgrades: when less is more", Circ. Arrhythm. Electrophysiol., 3(4), 413 (2010). https://doi.org/10.1161/CIRCEP.110.954107
  56. H. Tao, S. W. Hwang, B. Marelli, B. An, J. E. Moreau, M. Yang, M. A. Brenckle, S. Kim, D. L. Kaplan, J. A. Rogers and F. G. Omenetto, "Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement", Proc. Natl. Acad. Sci., 111(49), 17385 (2014). https://doi.org/10.1073/pnas.1407743111
  57. N. Carney, A. M. Totten, C. O'Reilly, J. S. Ullman, G. W. Hawryluk, M. J. Bell, S. L. Bratton, R. Chesnut, O. A. Harris, N. Kissoon, A. M. Rubiano, L. Shutter, R. C. Tasker, M. S. Vavilala, J. Wilberger, D. W. Wright and J. Ghajar, "Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition", Neurosurgery, 80(1), 6 (2017). https://doi.org/10.1227/neu.0000000000001432
  58. M. E. Brogan and E. M. Manno, "Treatment of malignant brain edema and increased intracranial pressure after stroke", Curr. Treat. Options. Neurol., 17(1), 327 (2015). https://doi.org/10.1007/s11940-014-0327-0
  59. E. Niedermeyer, F. H. Lopes da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th Ed., Lippincott Williams & Wilkins (2005)
  60. W. C. Stacey and B. Litt, "Technology insight: neuroengineering and epilepsy-designing devices for seizure control", Nat. Clin. Pract. Neurol., 4(4), 190 (2008). https://doi.org/10.1038/ncpneuro0750
  61. R. Saha, N. Jackson, C. Patel and J. Muthuswamy, "Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo", IEEE Trans Neural Syst Rehabil Eng., 18(5), 489 (2010). https://doi.org/10.1109/TNSRE.2010.2056389
  62. L. Wang, C. Lu, S. Yang, P. Sun, Y. Wang, Y. Guan, S. Liu, D. Cheng, H. Meng, Q. Wang, J. He, H. Hou, H. Li, W. Lu, Y. Zhao, J. Wang, Y. Zhu, Y. Li, D. Luo, T. Li, H. Chen, S. Wang, X. Sheng, W. Xiong, X. Wang, J. Peng and L. Yin, "A fully biodegradable and self-electrified device for neuroregenerative medicine", Sci. Adv., 6(50), eabc6686 (2020). https://doi.org/10.1126/sciadv.abc6686
  63. Y. Choi, K. Park, H. Choi, D. Son and M. Shin, "Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics", Polymers (Basel), 13(7) (2021).
  64. K. Veltri, J. M. Kwiecien, W. Minet, M. Fahnestock and J. R. Bain, "Contribution of the Distal Nerve Sheath to Nerve and Muscle Preservation Following Denervation and Sensory Protection", J Reconstr. Microsurg., 21(01), 57 (2005). https://doi.org/10.1055/s-2005-862783
  65. S. Y. Fu and T. Gordon, "The cellular and molecular basis of peripheral nerve regeneration", Mol. Neurobiol., 14(1), 67 (1997). https://doi.org/10.1007/BF02740621
  66. D. H. Kim, Y. J. Cho, R. L. Tiel and D. G. Kline, "Outcomes of surgery in 1019 brachial plexus lesions treated at Louisiana State University Health Sciences Center", J Neurosurg., 98(5), 1005 (2003). https://doi.org/10.3171/jns.2003.98.5.1005
  67. J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz and B. El-Kareh, "Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics", IEEE Electron Device Lett., 22(5), 230 (2001). https://doi.org/10.1109/55.919238
  68. Y. C. Lin, Q. K. Le, L. W. Lai, R. M. Liao, M. S. Jeng and D. S. Liu, "Optimizing The Organic/Inorganic Barrier Structure For Flexible Plastic Substrate Encapsulation", Int. j. eng. innov. technol., 2 (2012).
  69. R. Sang, H. Zhang, L. Long, Z. Hua, J. Yu, B. Wei, X. Wu, T. Feng and J. Zhang, "Thin film encapsulation for OLED display using silicon nitride and silicon oxide composite film", 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, (2011).
  70. J. J. W. M. Rosink, H. Lifka, G. H. Rietjens and A. Pierik, "34.1: Ultra-Thin Encapsulation for Large-Area OLED Displays", SID Symposium Digest of Technical Papers, 36(1), 1272 (2005).
  71. S. M. Won, J. Koo, K. E. Crawford, A. D. Mickle, Y. Xue, S. Min, L. A. McIlvried, Y. Yan, S. B. Kim, S. M. Lee, B. H. Kim, H. Jang, M. R. MacEwan, Y. Huang, R. W. Gereau and J. A. Rogers, "Natural Wax for Transient Electronics", Adv. Funct. Mater., 28(32) (2018).
  72. S. K. Kang, S. W. Hwang, S. Yu, J. H. Seo, E. A. Corbin, J. Shin, D. S. Wie, R. Bashir, Z. Ma and J. A. Rogers, "Biodegradable Thin Metal Foils and Spin-On Glass Materials for Transient Electronics", Adv. Funct. Mater., 25(12), 1789 (2015). https://doi.org/10.1002/adfm.201403469
  73. Y. Finer and J. P. Santerre, "Salivary Esterase Activity and Its Association with the Biodegradation of Dental Composites", J. Dent. Res., 83(1), 22 (2004). https://doi.org/10.1177/154405910408300105
  74. S. Li, L. Liu, H. Garreau and M. Vert, "Lipase-Catalyzed Biodegradation of Poly(ε-caprolactone) Blended with Various Polylactide-Based Polymers", Biomacromolecules, 4(2), 372 (2003). https://doi.org/10.1021/bm025748j
  75. R. Rojas Molina, M. De Leon Zapata, S. Saucedo, M. Aguilar and C. Aguilar, "Chemical and structural characterization of Candelilla (Euphorbia antisyphilitica Zucc.)", J. Med. Plant Res., 7, 702 (2013).
  76. H. C. Chen, C.-H. Kuo, H. H. Chen, Y.-C. Liu and C. J. Shieh, "Optimization of Enzymatic Synthesis of Cetyl 2-Ethylhexanoate by Novozym® 435", J Am Oil Chem Soc, 88(12), 1917 (2011). https://doi.org/10.1007/s11746-011-1868-y
  77. Y. S. Choi, J. Koo, Y. J. Lee, G. Lee, R. Avila, H. Ying, J. Reeder, L. Hambitzer, K. Im, J. Kim, K. M. Lee, J. Cheng, Y. Huang, S. K. Kang and J. A. Rogers, "Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics", Adv. Funct. Mater., 30(31) (2020).
  78. W. Bai, J. Shin, R. Fu, I. Kandela, D. Lu, X. Ni, Y. Park, Z. Liu, T. Hang, D. Wu, Y. Liu, C. R. Haney, I. Stepien, Q. Yang, J. Zhao, K. R. Nandoliya, H. Zhang, X. Sheng, L. Yin, K. M. Renaris, A. Brikha, F. Aird, M. Pezhouh, J. Hornick, W. Zhou and J. A. Rogers, "Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity", Nat. Biomed. Eng., 3, 644 (2019) https://doi.org/10.1038/s41551-019-0435-y