DOI QR코드

DOI QR Code

A Study on Foot Pressure by using an Insole Equipped with the Orthogonal Grid Sensor

직교 그리드 센서가 삽입된 인솔을 이용한 족압분포 연구

  • Son, Jeong-Hyeop (School of Mechanical Engineering, Chung-Ang University) ;
  • Jun, In-Jun (School of Mechanical Engineering, Chung-Ang University) ;
  • Chang, Seung-Hwan (School of Mechanical Engineering, Chung-Ang University)
  • Received : 2021.06.07
  • Accepted : 2021.06.09
  • Published : 2021.07.01

Abstract

In this study, we present a research method to develop a shoe that prevents foot injury by inducing the foot pressure. An orthogonal grid sensor was used to check the foot pressure in the upright standing position, and the change in the foot pressure distribution for various conditions was compared. We checked the conditions for distributing foot pressure efficiently by changing the spring constant of the spring inserted into the sole of the shoe and the foot pressure generated with or without the arch of the insole. In order to minimize the experimental error from the randomness of the human body's behavior, it is possible to predict through foot pressure under certain conditions through finite element analysis that simulates the pressure distribution. By checking the change of foot pressure according to the number and arrangement of springs through finite element analysis, conditions were established to provide more efficient foot pressure. The result can be used for designing footwear for patients with diabetic feet.

본 연구에서는 당뇨병 환자들의 균일한 족압 분포를 유도하여 발의 상처를 예방하는 신발을 개발하기 위한 연구방법을 제시하였다. 직교 그리드 센서를 사용하여 일반인의 직립 상태 시 족압 분포를 확인하고, 다양한 조건에 대한 족압분포의 변화를 비교하였다. 신발 바닥부에 삽입된 스프링의 스프링 상수와 인솔의 아치부 유무 등에 따른 족압 분포의 변화를 파악하여 효과적인 족압 분산 조건을 확인하였다. 인체거동의 임의성 등에 의한 실험 오차를 최소화 하기 위해, 직립 상태를 모사한 유한요소해석을 통해 특정 조건에서의 족압 분포를 예측하고 실험 결과와 비교하여 실험의 정확성을 확보할 수 있도록 하였다. 스프링의 개수와 배치에 따른 족압 분포의 변화를 유한요소해석을 통해 확인하여 보다 균일한 족압을 구현할 수 있는 조건을 제시하였다. 이러한 결과는 당뇨발을 가진 환자를 위한 신발 설계에 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea, as funded by the Ministry of Science, ICT, and Future Planning [grant number NRF2016M3A7B4910532].

References

  1. Yang, H.J., Lee, J.Y., and Yu, W.R., "Carbon Nanotube Fiber Assemblies with Braided Insulation Layers for Washable Capacitive Textile Touch Sensors," Functional Composites and Structures, Vol. 2, No. 1, 2020.
  2. Bae, J.H., and Chang, S.H., "PVDF-based Ferroelectric Polymers and Dielectric Elastomers for Sensor and Actuator Applications: A Review," Functional Composites and Structures, Vol. 1, No. 1, 2019.
  3. Tao, J., Dong, M., Li, L., Wang, C., Li, J., Liu, Y., Bao, R., and Pan, C., "Real-time Pressure Mapping Smart Insole System Based on a Controllable Vertical Pore Dielectric Layer," Microsystems & Nanoengineering, Vol. 6, No. 1, 2020, pp. 1-10. https://doi.org/10.1038/s41378-019-0121-y
  4. Chatwin, K.E., Abbott, C.A., Boulton, A.J.M., Bowling, F.L., and Reeves, N.D., "The Role of Foot Pressure Measurement in the Prediction and Prevention of Diabetic Foot Ulceration-A Comprehensive Review," Diabetes/Metabolism Research and Reviews, Vol. 36, No. 4, 2020, e3258. https://doi.org/10.1002/dmrr.3258
  5. Beach, C., Cooper, G., Weightman, A., Hodson-Tole, E.F., Reeves, N.D., and Casson, A.J., "Monitoring of Dynamic Plantar Foot Temperatures in Diabetes with Personalised 3D-Printed Wearables," Sensors, Vol. 21, No. 5, 2021, 1717. https://doi.org/10.3390/s21051717
  6. Majeed, A., and Chong, A.K., "Two Measures of Foot Pressure Image to Detect Foot Drop of Elderly Diabetes Sufferers," Proceeding of 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE, 2020.
  7. Gupta, P., Pandey, A., PAkshita, P., and Sharma, A., "IoT Based Healthcare Kit for Diabetic Foot Ulcer," Proceeding of ICRIC 2019, Springer, Cham, 2020, pp. 15-22.
  8. Najafi, B., Reeves, N.D., and Armstring, D.G., "Leveraging Smart Technologies to Improve the Management of Diabetic Foot Ulcers and Extend Ulcer-free Days in Remission," Diabetes/Metabolism Research and Reviews, Vol. 36, 2020, e3239. https://doi.org/10.1002/dmrr.3239
  9. Lo, W.T., Yick, K.L., Ng, S.P., and Yip, J., "New Methods for Evaluating Physical and Thermal Comfort Properties of Orthotic Materials Used in Insoles for Patients with Diabetes," Journal of Rehabilitation Research and Development, Vol. 51, No. 2, 2014, pp. 311-324. https://doi.org/10.1682/JRRD.2013.01.0012
  10. Flores, A.R., and Andres, I.M., "Numerical Simulation by Finite Elements for Redistribution of Plantar Pressure in Sport Insoles," Memorias del XLII Congreso Nacional de Ingenieria Biomedica, Vol. 7, No. 1, 2020.
  11. Armstrong, D.G., Lavery, L.A., and Bushman, T.R., "Peak Foot Pressures Influence the Healing Time of Diabetic Foot," Journal of Rehabilitation Research & Development, Vol. 35, No. 1, 1998, pp. 1-5.
  12. Rosenbaum, D., "Foot Loading Patterns Can be Changed by Deliberately Walking with In-toeing or Out-toeing Gait Modifications," Gait & Posture, Vol. 38, No. 4, 2013, pp. 1067-1069. https://doi.org/10.1016/j.gaitpost.2013.04.001