DOI QR코드

DOI QR Code

Optimized hardware implementation of CIE1931 color gamut control algorithms for FPGA-based performance improvement

FPGA 기반 성능 개선을 위한 CIE1931 색역 변환 알고리즘의 최적화된 하드웨어 구현

  • Kim, Dae-Woon (Department of Electronics Engineering, Dong-A University) ;
  • Kang, Bong-Soon (Department of Electronics Engineering, Dong-A University)
  • Received : 2021.04.23
  • Accepted : 2021.05.11
  • Published : 2021.06.30

Abstract

This paper proposes an optimized hardware implementation method for existing CIE1931 color gamut control algorithm. Among the post-processing methods of dehazing algorithms, existing algorithm with relatively low computations have the disadvantage of consuming many hardware resources by calculating large bits using Split multiplier in the computation process. The proposed algorithm achieves computational reduction and hardware miniaturization by reducing the predefined two matrix multiplication operations of the existing algorithm to one. And by optimizing the Split multiplier computation, it is implemented more efficient hardware to mount. The hardware was designed in the Verilog HDL language, and the results of logical synthesis using the Xilinx Vivado program were compared to verify real-time processing performance in 4K environments. Furthermore, this paper verifies the performance of the proposed hardware with mounting results on two FPGAs.

본 논문에서는 기존 CIE1931 색역 변환 알고리즘의 최적화된 하드웨어 구현 방법을 제안한다. 안개제거 알고리즘의 후처리 방법 중 비교적 연산량이 적은 기존 알고리즘은 연산 과정에서 Split multiplier를 사용한 큰 비트의 계산으로 하드웨어 자원 소모량이 크다는 단점이 있다. 제안하는 알고리즘은 기존 알고리즘의 미리 정의된 2번의 행렬 곱셈 연산을 하나로 줄임으로써 연산량 감소, 하드웨어 소형화를 실현하였고, Split multiplier 연산을 최적화시킴으로써 탑재하기에 더욱 효율적인 하드웨어를 구현하였다. 하드웨어는 Verilog HDL 언어로 설계하였고, Xilinx Vivado 프로그램을 이용한 논리합성 결과를 비교하여 4K 표준 환경에서 실시간 처리가 가능한 성능을 확인하였다. 또한, 2가지 FPGA에서의 탑재 결과를 통해 제안하는 하드웨어의 성능을 검증하였다.

Keywords

Acknowledgement

This paper was supported by research funds from Dong-A University.

References

  1. D. Ngo, S. M. Lee, Q. H. Nguyen, T. M. Ngo, G. D. Lee, and B. S. Kang, "Single Image Haze Removal from Image Enhancement Perspective for Real-Time Vision-Based Systems," Sensors 2020, vol. 20, no. 18, pp. 5170, 2020.
  2. A. Galdran, "Image dehazing by artificial multiple-exposure image fusion," Signal Processing, vol. 149, pp. 135-147, 2018. https://doi.org/10.1016/j.sigpro.2018.03.008
  3. N. R. Lee, Y. S. Ha, and S. J. Cho, "Improved DCP haze removal method using entropy of depth information," Journal of the Korean Society of Marine Engineering, vol. 41, no. 9, pp. 856-862, 2017.
  4. P. Xia and X. Liu, "Image dehazing technique based on polarimetric spectral analysis," Optik, vol. 127, no. 18, pp. 7350-7358, 2016. https://doi.org/10.1016/j.ijleo.2016.05.071
  5. D. Ngo, S. M. Lee, and B. S. Kang, "Robust Single-Imgae Haze Removal using Optimal Transmission Map and Adaptive Atmospheric Light," Remote Sensing, vol. 12, no. 14, pp. 2233, 2020. https://doi.org/10.3390/rs12142233
  6. C. H. Hsieh, "Dehazed Image Enhancement by a Gamma Correction with Global Limits," 2019 IEEE 10th International Conference on Awareness Science and Technology, Morioka, Japan, pp. 1-4, 2019.
  7. H. S. Kang and Y. H. Ko, "Image Quality Enhancement Method using Retinex in HSV Color Space and Saturation Correction," Journal of Korea Multimedia Society, vol. 20, no. 9, pp. 1481-1490, 2017. https://doi.org/10.9717/kmms.2017.20.9.1481
  8. S. M. Lee, S. W. Park, and B. S. Kang, "Hardware implementation of CIE1931 color coordinate system transformation for color correction," Journal of IKEEE, vol. 24, no. 2, pp. 502-506, 2020. https://doi.org/10.7471/IKEEE.2020.24.2.502
  9. D. Ngo, G. D. Lee, and B. S. Kang, "Improved Color Attenuation Prior for Single-Image Haze Removal," Applied Science, vol. 9, no. 19, 2019.
  10. D. W. Kim and B. S. Kang, "Color Correction with Optimized Hardware Implementation of CIE1931 Color Coordinate System Transformation," Journal of IKEEE, vol. 25, no. 1, pp. 10-14, 2021. https://doi.org/10.7471/IKEEE.2021.25.1.10