DOI QR코드

DOI QR Code

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus

사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구

  • Received : 2021.04.29
  • Accepted : 2021.06.10
  • Published : 2021.06.30

Abstract

Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.

식물 유래 exosome-like nanovesicles (plant-derived exosome-like nanovesicles, PELNs)은 다양한 생물학적 활성을 포함하고 높은 생체 적합성을 가지고 있다. 인체 내에서 PELNs은 세포 분화 및 증식 조절에 영향을 미칠 수 있어 여러 산업 분야에서 응용이 가능하다. 하지만, PELNs의 피부 생리적 기능에 대한 연구는 포유류 nanovesicles에 비해 미미한 실정이다. 본 연구에서는 사과 열매로부터 캘러스를 유도하고 exosome-like nanovesicles (Exosome-like nanovesicles isolated from Malus domestica (apple) fruit callus, ACELNs)를 분리하여 피부 장벽 및 피부 노화 개선에 대한 연구를 수행하였다. ACELNs의 수율은 6.42 × 109 particles/mL이였으며, 입자 사이즈는 100 ~ 200 nm 범위로 감지되었다. 인간 유래 피부세포인 HDF cells과 HaCaT cells에서 세포 증식을 유도하였으며, 세포 독성 억제 효과를 보였다. 각질형성능이 유의하게 증가했으며, mRNA levels에서 COL1A1과 FBN1 발현을 증가시켰다. 또한, UVA 조사된 HDF cells에 대한 collagen 합성을 촉진시켰다. 이러한 결과들은 ACELNs가 피부장벽 개선 및 피부노화를 방지할 수 있는 소재로서 활용하기 우수한 소재로 사료된다.

Keywords

References

  1. K. S. Lee, S. Shin, E. Cho, W. K. Im, S. H. Jeon, Y. Kim, D. Park, M. Frechet, H. Chajra, and E. Jung, nc886, a non-coding RNA, inhibits UVB-induced MMP-9 and COX-2 expression via the PKR pathway in human keratinocytes, Biochem Biophys Res Commun, 512(4), 647 (2019). https://doi.org/10.1016/j.bbrc.2019.01.068
  2. B. K. Armstrong and A. Kricker, The epidemiology of UV induced skin cancer, J Photochem Photobiol B, 63(1-3), 8 (2001). https://doi.org/10.1016/S1011-1344(01)00198-1
  3. M. B. Hogan, K. Peele, and N. W. Wilson, Skin barrier function and its importance at the start of the atopic march, J Allergy (Cairo), 2012, 901940 (2012). https://doi.org/10.1155/2012/901940
  4. A. Barbulova, F. Apone, and G. Colucci, Plant cell cultures as source of cosmetic active ingredients, Cosmetics, 1(2), 94 (2014). https://doi.org/10.3390/cosmetics1020094
  5. B. Gyorgy, T. G. Szabo, M. Pasztoi, Z. Pal, P. Misjak, B. Aradi, V. Laszlo, E. Pallinger, E. Pap, A. Kittel, G. Nagy, A. Falus, and E. I. Buzas, Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell Mol L ife Sci, 68(16), 2667 (2011). https://doi.org/10.1007/s00018-011-0689-3
  6. M. Zhang, E. Viennois, C. Xu, and D. Merlin, Plant derived edible nanoparticles as a new therapeutic approach against diseases, Tissue barriers, 4(2), e1134415 (2016). https://doi.org/10.1080/21688370.2015.1134415
  7. S. Rome, Biological properties of plant-derived extracellular vesicles, Food Funct., 10(2), 529 (2019). https://doi.org/10.1039/c8fo02295j
  8. R. Lee, H. J. Ko, K. Kim, Y. Sohn, S. Y. Min, J. A. Kim, D. Na, and J. H. Yeon, Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin, J Extracell Vesicles, 9(1), 1703480 (2020). https://doi.org/10.1080/20013078.2019.1703480
  9. J. Wu, H. Gao, L. Zhao, X. Liao, F. Chen, Z. Wang, and X. Hu, Chemical compositional characterization of some apple cultivars, Food Chemistry, 103(1) 88 (2007). https://doi.org/10.1016/j.foodchem.2006.07.030
  10. M. Liaudanskas, P. Viskelis, D. Kviklys, R. Raudonis, and V. Janulis, A comparative study of phenolic content in apple fruits, Int. J. Food. Prop., 18(5), 945 (2015). https://doi.org/10.1080/10942912.2014.911311
  11. L. Jong, Characterization of soy protein nanoparticles prepared by high shear microfluidization, J. Dispers. Sci. Technol., 34(4), 469 (2013). https://doi.org/10.1080/01932691.2012.681611
  12. P. Zhang, J. C. Yeo, and C. T. Lim, Advances in technologies for purification and enrichment of extracellular vesicles, SLAS Technol., 24(5), 477 (2019). https://doi.org/10.1177/2472630319846877
  13. Y. Cui, J. Gao, Y. He, and L. Jiang, Plant extracellular vesicles, Protoplasma, 257(1), 3 (2020). https://doi.org/10.1007/s00709-019-01435-6
  14. A. E. Kalinin, A. V. Kajava, and P. M. Steinert, Epithelial barrier function: assembly and structural features of the cornified cell envelope, Bioessays, 24(9), 789 (2002). https://doi.org/10.1002/bies.10144
  15. G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanisms of photoaging and chronological skin aging, Arch Dermatol., 138(11), 1462 (2002).
  16. E. Woith, G. Guerriero, J. F. Hausman, J. Renaut, C. C. Leclercq, C. Weise, S. Legay, A. Weng, and M. F. Melzig, Plant extracellular vesicles and nanovesicles: focus on secondary metabolites, proteins and lipids with perspectives on their potential and sources, Int. J. Mol. Sci, 22(7), 3719 (2021). https://doi.org/10.3390/ijms22073719