DOI QR코드

DOI QR Code

A review on status of organic micropollutants from sewage effluent and their management strategies

하수 유래 미량오염물질 현황과 관리 방안 고찰

  • Choi, Sangki (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Woongbae (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Young-Mo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Hong, Seok-Won (Water Cycle Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Son, Heejong (Water Quality Institute, Busan Water Authority) ;
  • Lee, Yunho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 최상기 (광주과학기술원 지구환경공학부) ;
  • 이웅배 (광주과학기술원 지구환경공학부) ;
  • 김영모 (한양대학교 건설환경공학과) ;
  • 홍석원 (한국과학기술연구원 물자원순환연구센터) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 이윤호 (광주과학기술원 지구환경공학부)
  • Received : 2021.05.20
  • Accepted : 2021.06.14
  • Published : 2021.06.15

Abstract

Due to the large-scale production and use of synthetic chemicals in industralized countries, various chemicals are found in the aquatic environment, which are often termed as micropollutants. Effluents of municipal wastewater treatment plants (WWTPs) have been identified as one of the major sources of these micropollutants. In this article, the current status of occurrence and removal of micropollutants in WWTPs and their management policies and options in domestic and foregin countries were critically reviewed. A large number of pharmaceuticals, personal care products, and industrial chemicals are found in WWTPs' influent, and are only partially removed by current biological wastewater treatment processes. As a result, some micropollutants are present in WWTPs' effluents, which can negatively affect receiving water quality or drinking water source. To better understand and assess the potential risk of micropollutants, a systematic monitoring framework including advanced analytical tools such as high resolution mass spectrometry and bioanalytical methods is needed. Some Western European countries are taking proactive approach to controlling the micropollutants by upgrading WWTP with enahnced effluent treatment processes. While this enahnced WWTP effluent treatment appears to be a viable option for controlling micropollutant, its implementation requires careful consideration of the technical, economical, political, and cultural issues of all stakeholders.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 상하수도 혁신 기술개발사업의 지원을 받아 연구되었습니다. (2019002710004).

References

  1. Achermann, S., Falas, P., Joss, A., Mansfeldt, C.B., Men, Y., Vogler, B. and Fenner, K. (2018). Trends in micropollutant biotransformation along a solids retention time gradient, Environ. Sci. Technol., 52(20), 11601-11611.
  2. Acosta, L. (2019). "Micropollutant removal on municipal WWTPs - Current situation in Baden-Wurttemberg, Germany", Aquatech Amsterdam, 2-5 November, 2019, Amsterdam, Netherland.
  3. Ahting, M., Brauer, F., Duffek, A., Ebert, I., Eckhardt, A., Hassold, E., Helmecke, M., Kirst, I., Krause, B., Lepom, P., Leuthold, S., Mathan, C., Mohaupt, V., Moltmann, J. F., Mueller, A., Noeh, I., Pickl, C., Pirntke, U., Pohl, K., Rechenber, J., Suhr, M., Thierbach, C., Tietjen., L. Von der Ohe, P. Winde, C. and Umwelt Bundesant. (2018). Umweltbundesamt: Empfehlungen zur Reduzierung von Mikroverunreinigungen in den Gewassern., 1-59.
  4. Alder, A.C., Schaffner, C., Majewsky, M., Klasmeier, J. and Fenner, K. (2010). Fate of β-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland, Water Res., 44(3), 936-948. https://doi.org/10.1016/j.watres.2009.10.002
  5. Audenaert, W., Chys, M., Auvinen, H., Dumoulin, A., Rousseau, D. and Van Hulle, S. (2014). (Future) regulation of trace organic compounds in WWTP effluents as a driver of advanced wastewater treatment, Ozone News, 42(6), 17-23.
  6. Australian Water Recycling Centre of Excellence. (2017). A national framework for validating water-recycling technology.
  7. Baek, S.S., Choi, Y., Jeon, J., Pyo, J., Park, J. and Cho, K.H. (2021). Replacing the internal standard to estimate micropollutants using deep and machine learning, Water Res., 188, 116535. https://doi.org/10.1016/j.watres.2020.116535
  8. Barbosa, M.O., Moreira, N.F., Ribeiro, A.R., Pereira, M.F. and Silva, A.M. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495, Water Res., 94, 257-279. https://doi.org/10.1016/j.watres.2016.02.047
  9. Been, F., Pronk, T., Louisse, J., Houtman, C., Van der Velden-Slootweg, T., van der Oost, R. and Dingemans, M.M. (2021). Development of a framework to derive effect-based trigger values to interpret CALUX data for drinking water quality, Water Res., 193, 116859. https://doi.org/10.1016/j.watres.2021.116859
  10. Bendz, D., Paxeus, N.A., Ginn, T.R. and Loge, F.J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden, J. Hazard. Mater., 122(3), 195-204. https://doi.org/10.1016/j.jhazmat.2005.03.012
  11. Bourgin, M., Beck, B., Boehler, M., Borowska, E., Fleiner, J., Salhi, E., Teichler, R., Von Gunten, U., Siegrist, H. and McArdell, C.S. (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res., 129, 486-498. https://doi.org/10.1016/j.watres.2017.10.036
  12. California Water Boards. (2018). Policy for water quality control for recycled water, 49, https://www.waterboards.ca.gov/water_issues/programs/water_recycling_policy/ (February 26, 2021).
  13. Campo, J., Masia, A., Pico, Y., Farre, M. and Barcelo, D. (2014). Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants, Sci. Total Environ., 472, 912-922. https://doi.org/10.1016/j.scitotenv.2013.11.056
  14. Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M. and Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant, Water Res., 38(12), 2918-2926. https://doi.org/10.1016/j.watres.2004.03.029
  15. Carmona, E., Andreu, V. and Pico, Y. (2017). Multi-residue determination of 47 organic compounds in water, soil, sediment and fish-Turia River as case study, J. Pharm. Biomed., 146, 117-125. https://doi.org/10.1016/j.jpba.2017.08.014
  16. Choi, J. (2012). Analysis of Triazines in water using orbitrap high resolution and accurate mass spectrometer, KSFEA, 15(4), 282-291.
  17. Choi, K., Kim, Y., Park, J., Park, C.K., Kim, M., Kim, H.S. and Kim, P. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea, Sci. Total Environ., 405(1-3), 120-128. https://doi.org/10.1016/j.scitotenv.2008.06.038
  18. Choi, Y., Lee, J.H., Kim, K., Mun, H., Park, N. and Jeon, J. (2021). Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: Application of LC-HRMS based suspect and non-target screening, J. Hazard. Mater., 402, 123706. https://doi.org/10.1016/j.jhazmat.2020.123706
  19. Chuang, Y.H. and Mitch, W.A. (2017). Effect of ozonation and biological activated carbon treatment of wastewater effluents on formation of N-nitrosamines and halogenated disinfection byproducts, Environ. Sci. Technol., 51(4), 2329-2338. https://doi.org/10.1021/acs.est.6b04693
  20. Clara, M., Kreuzinger, N., Strenn, B., Gans, O. and Kroiss, H. (2005). The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants, Water Res., 39(1), 97-106. https://doi.org/10.1016/j.watres.2004.08.036
  21. Commission Implementing Decision (EU). (2015). 2015/495 Of 20 March 2015.
  22. Commission Implementing Decision (EU). (2018). 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495.
  23. Drewes, J.E. and Khan, S.J. (2015). Contemporary design, operation, and monitoring of potable reuse systems, J. Water Reuse Desal., 5(1), 1-7. https://doi.org/10.2166/wrd.2014.148
  24. Eggen, R.I., Hollender, J., Joss, A., Scharer, M. and Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants, Environ. Sci. Technol., 7683-7689.
  25. Federal Office for the Environment (FOEN). (2017). Gewasserqualitat: Revision der Gewasserschutzverordnung.
  26. Foster, A.L. (2007). Occurrence and Fate of Endocrine Disruptors through the San Marco Wastewater Treatment Plant, Thesis of Master of Science, Texas State University.
  27. Gawel, E., Kock, W., Schindler, H., Hollander, R., Lautenschlager, S., Schimpke, J. and Seim, S., Umwelt Bundesamt. (2015). Mikroverunreinigungen und Abwasserabgabe, UBA-Texte 26/2015, 1-132.
  28. Gobel, A., Thomsen, A., McArdell, C.S., Joss, A. and Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment, Environ. Sci. Technol., 39(11), 3981-3989. https://doi.org/10.1021/es048550a
  29. Gomez, M.J., Bueno, M.M., Lacorte, S., Fernandez-Alba, A.R. and Aguera, A. (2007). Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast, Chemosphere, 66(6), 993-1002. https://doi.org/10.1016/j.chemosphere.2006.07.051
  30. Ha, M.H. and Kim, S. (2009). Current uses and research activity regarding non-testing methods including (Q)SARs in various chemical regulatory programs, J. Environ. Toxicol., 24(3), 261-270.
  31. Herzog, B., Lemmer, H., Helmreich, B., Horn, H. and Muller, E. (2014). Monitoring benzotriazoles: a 1 year study on concentrations and removal efficiencies in three different wastewater treatment plants, Water Sci. Technol., 69(4), 710-717. https://doi.org/10.2166/wst.2013.766
  32. Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., McArdell, C.S., Ort, C., Singer, H., Von Gunten, U. and Siegrist, H. (2009). Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration, Environ. Sci. Technol., 43(20), 7862-7869. https://doi.org/10.1021/es9014629
  33. Jeon, J., Park, N. and Lee, S.H. (2016). Application of target, suspect, nontarget screening methods based on high resolution mass spectrometry for the identification of micropollutants and their transformation products in aquatic environments: A review, J. Korea Soc. Environ. Anal., 19(4), 225-245.
  34. Jeong, D., Ham, S., Lee, W., Chung, H. and Kim, H. (2017). Study on occurrence and management of organic micropollutants in sewer systems, J. Korean Soc. Water Wastewater, 31(6), 551-566. https://doi.org/10.11001/jksww.2017.31.6.551
  35. Jeong, J., Lim, C., Jung, D.W. and Choi, J. (2019). ToxCastTM program for high throughput screening of environmental chemical toxicity, a review, J. Korea Soc. Environ. Anal., 22(2), 77-83.
  36. Jim, T.Y., Bouwer, E.J. and Coelhan, M. (2006). Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent, Agric. Water Manag., 86(1-2), 72-80. https://doi.org/10.1016/j.agwat.2006.06.015
  37. Johnson, A.C., Jin, X., Nakada, N. and Sumpter, J.P. (2020). Learning from the past and considering the future of chemicals in the environment, Sci., 367(6476), 384-387. https://doi.org/10.1126/science.aay6637
  38. Joss, A., Andersen, H., Ternes, T., Richle, P. R. and Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization, Environ. Sci. Technol., 38(11), 3047-3055. https://doi.org/10.1021/es0351488
  39. Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C.S., Ternes, T.A., Thomsen, A. and Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme, Water Res., 40(8), 1686-1696. https://doi.org/10.1016/j.watres.2006.02.014
  40. Kang, D., Jeon, J., Song, M. and Ra, J. (2019). Verification of Automatic Water Sampling System for Chemical Spill Events, J. Environ. Anal. Health Toxicol., 22, 126-134. https://doi.org/10.36278/jeaht.22.3.126
  41. Kasprzyk-Hordern, B., Dinsdale, R.M. and Guwy, A.J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, Water Res., 43(2), 363-380. https://doi.org/10.1016/j.watres.2008.10.047
  42. Khan, S. (2013). Submission to the State Development, Infrastructure and Industry Committee Inquiry.
  43. Khan, S.J. and Anderson, R. (2018). Potable reuse: Experiences in Australia, Curr. Opin. Environ. Sci. Health, 2, 55-60. https://doi.org/10.1016/j.coesh.2018.02.002
  44. Khan, S.J. and Ongerth, J.E. (2005). Occurrence and removal of pharmaceuticals at an Australian sewage treatment plant, Water, 32(4), 80-85.
  45. Kim, H., Ahn, J.H. and Hong, Y. (2013). A study on the management of micropollutants in water system considering climate change and other potential effects, Korean Chem. Eng. Res., 51(6), 645-654. https://doi.org/10.9713/kcer.2013.51.6.645
  46. Kim, M.S., Lee, K. and Lee, C. (2020). Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater, J. Korean Soc. Water Wastewater, 34(6), 445-462. https://doi.org/10.11001/jksww.2020.34.6.445
  47. Kimura, K., Hara, H. and Watanabe, Y. (2007). Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors, Environ. Sci. Technol., 41(10), 3708-3714. https://doi.org/10.1021/es061684z
  48. Kompentenzzentrum Mikorschadstoffe.NRW (2018). https://nrwmikro.amit-services.de/fileadmin/user_upload/Tatenbank/Projektsteckbriefe_PDF/180528_Karte_inklListe_Webse ite.pdf (February 25, 2021).
  49. Korea Federation of Water Science and Engineering Society (KWSES). (2020). http://www.me.go.kr/home/file/readDownloadFile.do;jsessionid=k9s90AfOvQqR-usvj1kZOfdo.mehome1?fileId=199468&fileSeq=3 (March 1, 2021).
  50. Lee, C., Lee, S. and Jang, I. (2009). Occurrence of priority pollutants in the midstream of Nakdong river basin, J. Korean Soc. Environ. Eng., 31(6), 401-408.
  51. Lee, Y., Park, J., Shin, S. and Kim, K. (2015). Wastewater Effluent Discharge Status and Problems in Nakdong River, Yeongmam Area Water Resources Policy Research Association, 1-25.
  52. Lin, A.Y.C., Tsai, Y.T., Yu, T.H., Wang, X.H. and Lin, C.F. (2011). Occurrence and fate of pharmaceuticals and personal care products in Taiwan's aquatic environment, Desalin. Water Treat., 32(1-3), 57-64. https://doi.org/10.5004/dwt.2011.2678
  53. Lindqvist, N., Tuhkanen, T. and Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters, Water Res., 39(11), 2219-2228. https://doi.org/10.1016/j.watres.2005.04.003
  54. Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M. and Seto, P. (2006). Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada, Sci. Total Environ., 367(2-3), 544-558. https://doi.org/10.1016/j.scitotenv.2006.03.021
  55. Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., Cao, Z. and Zhang, T. (2021). A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms, Environ. Int., 146, 106277. https://doi.org/10.1016/j.envint.2020.106277
  56. Loganathan, B., Phillips, M., Mowery, H. and Jones-Lepp, T.L. (2009). Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant, Chemosphere, 75(1), 70-77. https://doi.org/10.1016/j.chemosphere.2008.11.047
  57. Logar, I., Brouwer, R., Maurer, M. and Ort, C. (2014). Cost-benefit analysis of the swiss national policy on reducing micropollutants in treated wastewater, Environ. Sci. Technol., 48(21), 12500-12508. https://doi.org/10.1021/es502338j
  58. Loos, R., Carvalho, R., Antonio, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L. and Gawlik, B.M. (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents, Water Res., 47(17), 6475-6487. https://doi.org/10.1016/j.watres.2013.08.024
  59. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L. D., Hai, F.I., Zhang, J., Liang, S. and Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, 473, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065
  60. Mao, H., Li, H., Li, Y., Li, L., Yin, L. and Yang, Z. (2020). Four typical personal care products in a municipal wastewater treatment plant in China: Occurrence, removal efficiency, mass loading and emission, Ecotox. Environ. Safe, 188, 109818. https://doi.org/10.1016/j.ecoenv.2019.109818
  61. Maurer, M., Escher, B.I., Richle, P., Schaffner, C. and Alder, A.C. (2007). Elimination of β-blockers in sewage treatment plants, Water Res., 41(7), 1614-1622. https://doi.org/10.1016/j.watres.2007.01.004
  62. McArdell, C.S. (2019). "Progress made and challenges in abatement technologogies for municipal wastewater: the Swiss case", Norman / AQUAlity workshop, 6 March, 2019, Paris, France.
  63. Meier, A., Grelot, J. and Abegglen, C. (2018). "Full-scale micropollutant removal from municipal wastewater in Switzerland", EU Workshop on Emerging Pollutants Brussels, 24 October, 2018, Brussels, Belgium.
  64. Meynet, P., Davenport, R.J. and Fenner, K. (2020). Understanding the Dependence of Micropollutant Biotransformation Rates on Short-Term Temperature Shifts, Environ. Sci. Technol., 54(19), 12214-12225. https://doi.org/10.1021/acs.est.0c04017
  65. Miklos, D.B., Hartl, R., Michel, P., Linden, K.G., Drewes, J.E., and Hubner, U. (2018a). UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents, Water Res., 136, 169-179. https://doi.org/10.1016/j.watres.2018.02.044
  66. Ministry of Environment (MOE). (2006). National water environment management plan: A masterplan of water quality conservation at 4 major river basins (2006-2015).
  67. Ministry of Environment (MOE). (2020a). Water Environment Conservation Act, Act No. 17007, 18 February 2020, other laws amended.
  68. Ministry of Environment (MOE). (2020b). Water Reuse Promotion and Support Act, Act No. 17326, 5 January 2021, partially amended.
  69. Ministry of Environment (MOE). (2021). Sewerage Act, Act No. 17852, 5 January 2021, partially amended.
  70. Na, T.W., Kang, T.W., Lee, K.H., Hwang, S.H., Jung, H.J. and Kim, K. (2019). Distribution and ecological risk of pharmaceuticals in surface water of the Yeongsan river, Republic of Korea, Ecotoxicol. Environ. Saf., 181, 180-186. https://doi.org/10.1016/j.ecoenv.2019.06.004
  71. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K. and Takada, H. (2006). Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment, Water Res., 40(17), 3297-3303. https://doi.org/10.1016/j.watres.2006.06.039
  72. National Institute of Environmental Research (NIER). (2006). Development of analytical method and study of exposure of pharmaceuticals and personal care products in environment, 178-181.
  73. National Institute of Environmental Research (NIER). (2010). A study on management of unregulated trace hazardous compounds in drinking water (I).
  74. National Institute of Environmental Research (NIER). (2015). Estimation of the Treatability and Management Practices to treat Water Pollutant Candidates(IV), NIER-RP2015-378, 1-29.
  75. National Institute of Environmental Research (NIER). (2018a). A study on management of unregulated hazardous compounds in drinking water, NIER-RP2018-206, 1-42.
  76. National Institute of Environmental Research (NIER). (2018b). Survey on the water pollutants list in industrial wastewater by industrial classification, NIER-RP2016-279, 1-32.
  77. National Institute of Environmental Research (NIER). (2018c). A study on mass balance and management measures of micropollutants in the public sewage treatment works (I), NIER-RP2018-207, 1-80.
  78. National Resource Management Ministerial Council (NRMMC). (2006). In National guidelines for water recycling: managing health and environmental risks (Phase 1), 2006, Environment protection and Heritage Council, and National Health and Medical research Council.
  79. National Resource Management Ministerial Council (NRMMC). (2008). In National guidelines for water recycling: managing health and environmental risks (Phase 2) - agumentation of drinking water supplies, 2008, Environment protection and Heritage Council, and National Health and Medical research Council.
  80. National Resource Management Ministerial Council (NRMMC). (2009). In National guidelines for water recycling: managing health and environmental risks (Phase 2) - managed aquifer recharge, 2009, Environment protection and Heritage Council, and National Health and Medical research Council.
  81. Nguyen, N.B., Kim, M.K., Le, Q.T., Ngo, D.N., Zoh, K.D. and Joo, S.W. (2021). Spectroscopic analysis of microplastic contaminants in an urban wastewater treatment plant from Seoul, South Korea, Chemosphere, 263, 127812. https://doi.org/10.1016/j.chemosphere.2020.127812
  82. Pal, A., Gin, K.Y.H., Lin, A.Y.C. and Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects, Sci. Total Environ., 408(24), 6062-6069. https://doi.org/10.1016/j.scitotenv.2010.09.026
  83. Park, N. and Jeon, J. (2021). Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization, Chemosphere, 263, 128014. https://doi.org/10.1016/j.chemosphere.2020.128014
  84. Oulton, R.L., Kohn, T. and Cwiertny, D.M. (2010). Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management, J. Environ. Monit., 12(11), 1956-1978. https://doi.org/10.1039/c0em00068j
  85. Paxeus, N. (2004). Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, b-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment, Water Sci. Technol., 50(5), 253-260. https://doi.org/10.2166/wst.2004.0335
  86. Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q. and Wang, Z. (2008). Occurrence of steroid estrogens, endocrinedisrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China, Sci. Total Environ., 397(1-3), 158-166. https://doi.org/10.1016/j.scitotenv.2008.02.059
  87. Quintana, J.B., Weiss, S. and Reemtsma, T. (2005). Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor, Water Res., 39(12), 2654-2664. https://doi.org/10.1016/j.watres.2005.04.068
  88. Radcliffe, J.C. (2015). Water recycling in Australia-during and after the drought. Environ. Sci.: Water Res. Technol., 1(5), 554-562. https://doi.org/10.1039/C5EW00048C
  89. Reemtsma, T., Quintana, J.B., Rodil, R., Garci, M. and Rodri, I. (2008). Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate, Trends Analyt. Chem., 27(9), 727-737. https://doi.org/10.1016/j.trac.2008.07.002
  90. Roberts, P.H. and Thomas, K.V. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Sci. Total Environ., 356(1-3), 143-153. https://doi.org/10.1016/j.scitotenv.2005.04.031
  91. Rodriguez, I., Quintana, J.B., Carpinteiro, J., Carro, A.M., Lorenzo, R.A. and Cela, R. (2003). Determination of acidic drugs in sewage water by gas chromatography-mass spectrometry as tert.-butyldimethylsilyl derivatives, J. Chromatogr. A, 985(1-2), 265-274. https://doi.org/10.1016/S0021-9673(02)01528-5
  92. Rosal, R., Rodriguez, A., Perdigon-Melon, J.A., Petre, A., Garcia-Calvo, E., Gomez, M. J., Aguera, A. and Fernandez-Alba, A.R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res., 44(2), 578-588. https://doi.org/10.1016/j.watres.2009.07.004
  93. Ryu, T.K., Cho, J.G., Kim, K.T., Yang, C.Y., Joung, K.E., Yoon, J. and Choi, K. (2010). Ecotoxicity test of wastewater by a battery o bioassay and toxicity identification evaluation, Environ. Health Toxicol, 25(3), 207-214.
  94. Salgado, R., Marques, R., Noronha, J.P., Carvalho, G., Oehmen, A. and Reis, M.A.M. (2012). Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant, Environ. Sci. Pollut., 19(5), 1818-1827. https://doi.org/10.1007/s11356-011-0693-z
  95. Santos, J.L., Aparicio, I., Callejon, M. and Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain), J. Hazard. Mater., 164(2-3), 1509-1516. https://doi.org/10.1016/j.jhazmat.2008.09.073
  96. Schueth, C. (2014). MARSOL: demonstrating managed aquifer recharge as a solution to water scarcity and drought, May, 2014, In EGU General Assembly Conference Abstracts, 9073.
  97. Seo, C., Choi, J., Yoo, P., Jang, S. and Son, H. (2015). Occurrence of UV filters in Nakdong river basin: Mainstreams, tributaries and STP effluents, J. Korean Soc. Environ. Eng., 37(8), 472-479. https://doi.org/10.4491/KSEE.2015.37.8.472
  98. Seo, C., Yoom, H., Song, M., Kim, K., Kim, S. and Son, H. (2020). Occurrence and behavior of residual pharmaceuticals in the Nakdong river basin, J. Korean Soc. Environ. Eng., 42(4), 177-187. https://doi.org/10.4491/KSEE.2020.42.4.177
  99. Sim, W.J., Lee, J.W. and Oh, J.E. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea, Environ. Pollut., 158(5), 1938-1947. https://doi.org/10.1016/j.envpol.2009.10.036
  100. Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A.B., Singh, N. and Singh, J. (2018). Toxicity, degradation and analysis of the herbicide atrazine, Environ. Chem. Lett., 16, 211-237. https://doi.org/10.1007/s10311-017-0665-8
  101. Son, H. and Jang, S. (2011). Occurrence of residual pharmaceuticals and fate, residue and toxic effect in drinking water resources, J. Korean Soc. Environ. Eng., 33(6), 453-479. https://doi.org/10.4491/KSEE.2011.33.6.453
  102. Spongberg, A.L. and Witter, J.D. (2008). Pharmaceutical compounds in the wastewater process stream in Northwest Ohio, Sci. Total Environ., 397(1-3), 148-157. https://doi.org/10.1016/j.scitotenv.2008.02.042
  103. Stasinakis, A.S., Mermigka, S., Samaras, V.G., Farmaki, E. and Thomaidis, N.S. (2012). Occurrence of endocrine disrupters and selected pharmaceuticals in Aisonas River (Greece) and environmental risk assessment using hazard indexes, Environ. Sci. Pollut., 19(5), 1574-1583. https://doi.org/10.1007/s11356-011-0661-7
  104. Statistics Korea (KOSTAT). (2018). Survey of distribution of chemicals, 58-59.
  105. Stumpf, M., Ternes, T.A., Wilken, R.D., Rodrigues, S.V. and Baumann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil, Sci. Total Environ., 225(1-2), 135-141. https://doi.org/10.1016/S0048-9697(98)00339-8
  106. Suarez, S., Carballa, M., Omil, F. and Lema, J.M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?, Rev. Environ. Sci. Biotechnol., 7(2), 125-138. https://doi.org/10.1007/s11157-008-9130-2
  107. Tauxe-Wuersch, A., De Alencastro, L.F., Grandjean, D. and Tarradellas, J. (2005). Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment, Water Res., 39(9), 1761-1772. https://doi.org/10.1016/j.watres.2005.03.003
  108. Ternes, T.A., Joss, A. and Siegrist, H. (2004). Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment, Environ. Sci. Technol., 38(20), 392A-399A. https://doi.org/10.1021/es040639t
  109. Thomas, P.M. and Foster, G.D. (2005). Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process, Environ. Toxicol. Chem., 24(1), 25-30. https://doi.org/10.1897/04-144R.1
  110. Trautwein, C., Berset, J.D., Wolschke, H. and Kummerer, K. (2014). Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle, Environ. Int., 70, 203-212. https://doi.org/10.1016/j.envint.2014.05.008
  111. Vieno, N.M., Tuhkanen, T. and Kronberg, L. (2005). Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water, Environ. Sci. Technol., 39(21), 8220-8226. https://doi.org/10.1021/es051124k
  112. Vieno, N., Tuhkanen, T. and Kronberg, L. (2007). Elimination of pharmaceuticals in sewage treatment plants in Finland, Water Res., 41(5), 1001-1012. https://doi.org/10.1016/j.watres.2006.12.017
  113. Virkutyte, J. and Varma, R. (2010). Treatment of micropollutants in water and wastewater. IWA Publishing, 1-51.
  114. WateReuse California. (2019). https://watereuse.org/wp-content/uploads/2015/01/WRCA- (February 26, 2021), California WateReuse Action Plan, 1-12.
  115. Wang, Y., Fenner, K. and Helbling, D.E. (2020). Clustering micropollutants based on initial biotransformations for improved prediction of micropollutant removal during conventional activated sludge treatment, Environ. Sci. Water Res. Technol., 6(3), 554-565. https://doi.org/10.1039/C9EW00838A
  116. WateReuse Research Foundation. (2015). Framework for direct potable reuse, https://watereuse.org/wp-content/uploads/2015/09/14-20.pdf (February 26, 2021).
  117. Watkinson, A.J., Murby, E.J. and Costanzo, S.D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Res., 41(18), 4164-4176. https://doi.org/10.1016/j.watres.2007.04.005
  118. Weigel, S., Berger, U., Jensen, E., Kallenborn, R., Thoresen, H. and Huhnerfuss, H. (2004). Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromso/Norway with emphasis on ibuprofen and its metabolites, Chemosphere, 56(6), 583-592. https://doi.org/10.1016/j.chemosphere.2004.04.015
  119. Wick, A., Fink, G., Joss, A., Siegrist, H. and Ternes, T.A. (2009). Fate of beta blockers and psycho-active drugs in conventional wastewater treatment, Water Res., 43(4), 1060-1074. https://doi.org/10.1016/j.watres.2008.11.031
  120. Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z. and Li, J. (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China, Water Res., 41(19), 4526-4534. https://doi.org/10.1016/j.watres.2007.06.023
  121. Yasojima, M., Nakada, N., Komori, K., Suzuki, Y. and Tanaka, H. (2006). Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan, Water Sci. Technol., 53(11), 227-233. https://doi.org/10.2166/wst.2006.357
  122. Zhang, W., Zhang, Y., Taniyasu, S., Yeung, L.W., Lam, P.K., Wang, J., Li, X., Yamashita, N. and Dai, J. (2013). Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China, Environ. Pollut., 176, 10-17. https://doi.org/10.1016/j.envpol.2012.12.019
  123. Zietzschmann, F., Aschermann, G. and Jekel, M. (2016). Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents, Water Res., 102, 190-201. https://doi.org/10.1016/j.watres.2016.06.041
  124. Zorita, S., Martensson, L. and Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden, Sci. Total Environ., 407(8), 2760-2770. https://doi.org/10.1016/j.scitotenv.2008.12.030