DOI QR코드

DOI QR Code

Review on Antifouling Membranes with Surface-Patterning for Water Purification

물 정화를 위한 표면패턴화된 내오염성 분리막에 대한 총설

  • Aung, Hein Htet (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 헤인 탯 엉 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.06.07
  • Accepted : 2021.06.24
  • Published : 2021.06.30

Abstract

As clean water continues to be a demand in this global water crisis, development of separation membrane technology for water purification becomes a necessity. The effectiveness of separation membranes is hindered in the water crisis due to fouling of membranes. To address this problem, the application of patterns on flat membranes via various methods have been recently studied and experimented. Patterned membranes have shown to not only reduce the fouling effects of membranes, but also increase the fluxes depending on the method and materials used. Each application has shown benefits that include, but not limited to, enhanced surface area, higher pure-water permeability, and increased number of filtration cycles. In this review, the effects of patterned membranes against antifouling is summarized and discussed.

전 세계적으로 물 위기인 상황에서 깨끗한 물에 대한 수요는 꾸준히 이어지고 있다. 이러한 상황에서 정수를 위한 멤브레인 분리 기술은 중요하다. 멤브레인의 오염 때문에 멤브레인의 분리 효과는 방해되고 있다. 이러한 문제를 해결하기 위해 최근에 여러 방법으로 평막에 패턴을 제공하는 연구와 실험이 수행되었다. 멤브레인의 패턴화는 오염을 줄일 뿐 아니라 방법과 재료에 따라 물투과 유속을 증가시켰다. 각각의 적용된 사례에서 증가된 표면적, 높은 물 투과도, 그리고 향상된 여과 사이클 등과 같은 효과를 보여주었다. 본 총설에서는 오염방지에 대한 패턴화 멤브레인의 효과를 소개하고 논의한다.

Keywords

Acknowledgement

This work was supported by the Material & Component Technology Development Program (20010846, Development of nano sized biofilter and module for virus removal) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)

References

  1. L. D. Tijing, J. R. C. Dizon, I. Ibrahim, A. R. N. Nisay, H. K. Shon, R. C. Advincula, "3D printing for membrane separation, desalination and water treatment", Appl. Mater. Today, 18, 100486 (2020). https://doi.org/10.1016/j.apmt.2019.100486
  2. A. Ambrosi, R. R. S. Shi, R. D. Webster, "3D-printing for electrolytic processes and electrochemical flow systems", J. Mater. Chem. A, 8, 21902 (2020). https://doi.org/10.1039/D0TA07939A
  3. A. Akthakul, R. F. Salinaro, A. M. Mayes, "Antifouling polymer membranes with subnanometer size selectivity", Macromolecules, 37, 7663 (2004). https://doi.org/10.1021/ma048837s
  4. D. M. Yebra, S. Kiil, K. Dam-Johansen, "Antifouling technology - Past, present and future steps towards efficient and environmentally friendly antifouling coatings", Prog. Org. Coatings, 50, 75 (2004). https://doi.org/10.1016/j.porgcoat.2003.06.001
  5. S. P. Nunes, "Can fouling in membranes be ever defeated?", Curr. Opin. Chem. Eng., 28, 90 (2020). https://doi.org/10.1016/j.coche.2020.03.006
  6. T. Y. Kim, J. W. Rhim, "Confirmation of The Fouling Phenomena in CDI Process and The Establishment of Its Removal Process Conditions", Membr. J., 29, 276 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.5.276
  7. Y. Ke, W. Yuan, F. Zhou, W. Guo, J. Li, Z. Zhuang, X. Su, B. Lu, Y. Zhao, Y. Tang, Y. Chen, J. Song, "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications", Renew. Sustain. Energy Rev., 145, 110860 (2021). https://doi.org/10.1016/j.rser.2021.110860
  8. H. Jang, J. Kim, "Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration", Membr. J., 30, 131 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.131
  9. M. L. Carman, T. G. Estes, A. W. Feinberg, J. F. Schumacher, W. Wilkerson, L. H. Wilson, M. E. Callow, J. A. Callow, A. B. Brennan, "Engineered antifouling microtopographies - Correlating wettability with cell attachment", Biofouling, 22, 11 (2006).
  10. K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, "Entropically driven colloidal crystallization on patterned surfaces", Phys. Rev. Lett., 85, 1770 (2000). https://doi.org/10.1103/PhysRevLett.85.1770
  11. M. Elimelech, W. A. Phillip, "The future of seawater desalination: Energy, technology, and the environment", Science, 333, 712 (2011). https://doi.org/10.1126/science.1200488
  12. N. U. Barambu, M. R. Bilad, Y. Wibisono, J. Jaafar, T. M. I. Mahlia, A. L. Khan, "Membrane surface patterning as a fouling mitigation strategy in liquid filtration: A review", Polym. 11, 10 (2019). https://doi.org/10.3390/polym11010010
  13. N. Yanar, P. Kallem, M. Son, H. Park, S. Kang, H. Choi, "A New era of water treatment technologies: 3D printing for membranes", J. Ind. Eng. Chem., 91, 1 (2020). https://doi.org/10.1016/j.jiec.2020.07.043
  14. Y. J. Won, J. Lee, D. C. Choi, H. R. Chae, I. Kim, C. H. Lee, I. C. Kim, "Preparation and application of patterned membranes for wastewater treatment", Environ. Sci. Technol., 46, 11021 (2012). https://doi.org/10.1021/es3020309
  15. M. N. Issac, B. Kandasubramanian, "Review of manufacturing three-dimensional-printed membranes for water treatment", Environ. Sci. Pollut. Res., 27, 36091 (2020). https://doi.org/10.1007/s11356-020-09452-2
  16. D. H. Nam, J. W. Rhim, "Separation Characteristics of Barium Ion in Water Using Capacitive Deionization (CDI) Process", Membr. J., 29, 355 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.355
  17. S. Aubert, M. Bezagu, A. C. Spivey, S. Arseniyadis, "Spatial and temporal control of chemical processes", Nat. Rev. Chem., 3, 706 (2019). https://doi.org/10.1038/s41570-019-0139-6
  18. D. Rana, T. Matsuura, "Surface modifications for antifouling membranes", Chem. Rev., 110, 2448 (2010). https://doi.org/10.1021/cr800208y
  19. Y. Ding, S. Maruf, M. Aghajani, A. R. Greenberg, "Surface patterning of polymeric membranes and its effect on antifouling characteristics", Sep. Sci. Technol., 52, 240 (2017). https://doi.org/10.1080/01496395.2016.1201115
  20. O. Heinz, M. Aghajani, A. R. Greenberg, Y. Ding, "Surface-patterning of polymeric membranes: fabrication and performance", Curr. Opin. Chem. Eng., 20, 1 (2018). https://doi.org/10.1016/j.coche.2018.01.008
  21. Y. Ding, J. Sun, H. W. Ro, Z. Wang, J. Zhou, N. J. Lin, M. T. Cicerone, C. L. Soles, L. G. Sheng, "Thermodynamic underpinnings of cell alignment on controlled topographies", Adv. Mater., 23, 421 (2011). https://doi.org/10.1002/adma.201001757
  22. A. Al-Shimmery, S. Mazinani, J. Ji, Y. M. J. Chew, D. Mattia, "3D printed composite membranes with enhanced anti-fouling behaviour", J. Membr. Sci., 574, 76 (2019). https://doi.org/10.1016/j.memsci.2018.12.058
  23. S. Mazinani, A. Al-Shimmery, Y. M. John Chew, D. Mattia, "3D Printed Fouling-Resistant Composite Membranes", ACS Appl. Mater. Interfaces, 11, 26373 (2019). https://doi.org/10.1021/acsami.9b07764
  24. A. Asad, M. Rastgar, H. Nazaripoor, M. Sadrzadeh, D. Sameoto, "Durability and recoverability of soft lithographically patterned hydrogel molds for the formation of phase separation membranes", Micromachines, 11, 108 (2020). https://doi.org/10.3390/mi11010108
  25. A. Asad, M. Sadrzadeh, D. Sameoto, "Direct Micropatterning of Phase Separation Membranes Using Hydrogel Soft Lithography", Adv. Mater. Technol., 4, 1800384 (2019). https://doi.org/10.1002/admt.201800384
  26. Q. Cao, "Anisotropic electrokinetic transport in channels modified with patterned polymer brushes", Soft Matter, 15, 4132 (2019). https://doi.org/10.1039/C9SM00385A
  27. Y. Ding, S. Maruf, M. Aghajani, A.R. Greenberg, "Surface patterning of polymeric membranes and its effect on antifouling characteristics", Sep. Sci. Technol., 52, 240 (2017). https://doi.org/10.1080/01496395.2016.1201115
  28. I. M. A. Elsherbiny, A. S. G. Khalil, M. Ulbricht, "Influence of surface micro-patterning and hydrogel coating on colloidal silica fouling of polyamide thin-film composite membranes", Membranes, 9, 67 (2019). https://doi.org/10.3390/membranes9060067
  29. X. He, T. Wang, Y. Li, J. Chen, J. Li, "Fabrication and characterization of micro-patterned PDMS composite membranes for enhanced ethanol recovery", J. Membr. Sci., 563, 447 (2018). https://doi.org/10.1016/j.memsci.2018.06.015
  30. A. Ilyas, A. Yihdego Gebreyohannes, J. Qian, D. Reynaerts, S. Kuhn, I. F. J. Vankelecom, "Micropatterned membranes prepared via modified phase inversion: Effect of modified interface on water fluxes and organic fouling", J. Colloid Interface Sci., 585, 490 (2021). https://doi.org/10.1016/j.jcis.2020.10.031
  31. S. Wang, Z. Y. Wang, J. Z. Xia, X. M. Wang, "Polyethylene-substrateed nanofiltration membrane with in situ formed surface patterns of millimeter size in resisting fouling", J. Membr. Sci., 620, 118830 (2021). https://doi.org/10.1016/j.memsci.2020.118830