DOI QR코드

DOI QR Code

Mineral Phase Transitions of Jarosite Substituted by Oxyanions during the Reductive Dissolution Using Oxalate Solution

옥살레이트 용액을 이용한 환원성 용해 시 산화음이온으로 치환된 자로사이트의 광물 상변화

  • Lee, Myoungsin (School of Earth System Sciences, Kyungpook National University) ;
  • Lee, Dongho (School of Earth System Sciences, Kyungpook National University) ;
  • Chun, Herin (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University) ;
  • Baek, YoungDoo (Department of Biomedical Laboratory Science, Daegu Health College)
  • 이명신 (경북대학교 지구시스템과학부) ;
  • 이동호 (경북대학교 지구시스템과학부) ;
  • 천혜린 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부) ;
  • 백영두 (대구보건대학교 임상병리학과)
  • Received : 2021.03.05
  • Accepted : 2021.06.06
  • Published : 2021.06.30

Abstract

The SO4 in the jarosite structure can be substituted by other oxyanions, and therefore, the transition of jarosite to goethite plays a very important role in controlling the behavior of oxyanions. In this study, the phase change according to the species of the oxyanion in jarosite and the related behavior of the oxyanion was studied by mineralogical and geochemical methods when jarosite, which is coprecipitated with various oxynions, undergoes a phase change by a reductive dissolution. Jarosite substituted by five oxyanions by 5 mol% was used in this study. The mineral phase change induced by reductive dissolution using ammonium oxalate was investigated, and the order of phase transition rate of jarosite to goethite was MoO4-jarosite ≥ SeO4-jarosite ≥ CrO4-jarosite > pure jarosite > SeO3-jarosite > AsO4-jarosite, showing that the transition rates vary depending on the substituted oxyanion. The resultant concentration of the leached Fe was slightly different depending on the type of oxyanion and time but did not show a noticeable difference. The concentration of each oxyanion leached according to the change of the mineral phase showed that the order of concentration of oxyanions was Mo > Se(SeO3) > As > Se(SeO4) > Cr in general, and showed a slight increase with time. This trend was related to the species of oxyanions rather than mineral phase change. The results of this study showed that the phase transition of jarosite to goethite was affected by the species of oxyanions, but this tendency did not affect the concentrations leached oxyanions.

자로사이트 내의 SO4는 다른 산화음이온으로 치환될 수 있는데 자로사이트가 침철석으로 전이되는 과정은 공침된 산화음이온의 거동에 중요한 역할을 하게 된다. 본 연구에서는 다양한 산화음이온과 함께 공침된 자로사이트가 환원성 용해에 의하여 상변화를 거칠 때 산화음이온 종에 따른 상변화의 양상과 이와 수반된 산화음이온의 거동을 광물학적 및 지구화학적으로 연구하였다. 다섯 가지의 산화음이온이 SO4를 5 몰% 치환한 자로사이트가 본 연구에 사용되었다. 본 연구에서는 암모늄 옥살레이트를 이용한 환원성 용해 시 일어나는 자로사이트의 광물상의 변화를 측정하였으며 자로사이트의 침철석으로의 전이 속도는 MoO4-자로사이트 ≥ SeO4-자로사이트 ≥ CrO4-자로사이트 > 순수한 자로사이트 > SeO3-자로사이트 > AsO4-자로사이트의 순서를 보여 치환된 산화음이온에 따라서 자로사이트의 상전이 속도가 다름을 보여주었다. 이에 따른 Fe의 용출은 시간과 산화음이온의 종류에 따라 큰 차이를 보이지 않았다. 광물의 변화에 따라 용출되어져서 나온 각 산화음이온의 농도는 전체적으로 Mo > Se(SeO3) > As > Se(SeO4) > Cr의 농도 순위를 보였으며 시간에 따라 약간의 증가를 보였다. 이러한 경향은 광물상의 변화보다는 산화음이온 종류의 특성에 의한 것으로 파악된다. 본 연구 결과는 산화음이온의 종류에 따라 자로사이트의 침철석으로의 변화는 영향이 있었으나 이러한 경향이 용출되는 산화음이온의 농도에 영향을 미치지 않음을 보여주었다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1A2C1002254).

References

  1. Akcil, A. and Koldas, S., 2006, Acid Mine Drainage (AMD): causes, treatment and case studies, Journal of Cleaner Production, 14, 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  2. Akhtar, M., Malik, M. A., Raftery, J. and O'Brien, P., 2014, Synthesis of iron selenide nanocrystals and thin films from bis (tetraisopropyldiselenoimidodiphosphinato)iron (II) and bis (tetraphenyldiselenoimidodiphosphinato)iron (II) complexes. Journal of Materials Chemistry A, 2, 20612-20620. https://doi.org/10.1039/C4TA04054F
  3. Alarcon, R., Gaviria, J., and Dold, B., 2014, Liberation of adsorbed and co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater. Minerals, 4, 603-620. https://doi.org/10.3390/min4030603
  4. Asta, M.P., Cama, J., Martinez, M. and Gimenez, J., 2009, Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171, 965-972. https://doi.org/10.1016/j.jhazmat.2009.06.097
  5. Baron, D. and Palmer, C.D., 1996, Solubility of jarosite at 4 and 35 ℃, Geochimica et Cosmochimica Act, 60, 185-195. https://doi.org/10.1016/0016-7037(95)00392-4
  6. Barron, V. and Torrent, J., 2006, Formation of Fe oxides from K-jarosite: effect of temperature, pH, phosphate, and salt concentration. In The 18th World Congress of Soil Science.
  7. Bigham, J.M., Carlson, L. and Murad, E.J.A.A., 1994, Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  8. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M., 1996, Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  9. Burton, E.D., Johnston, S.G., Watling, K., Bush, R.T., Keene, A.F. and Sullivan, L.A., 2010, Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Environmental Science & Technology, 44, 2916-2021.
  10. Dixit, S. and Hering, J., 2003, Comparison of Arsenic(V) and Arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37, 4182-4189. https://doi.org/10.1021/es030309t
  11. Dold, B., 2003, Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry, 18, 1531-1540. https://doi.org/10.1016/S0883-2927(03)00015-5
  12. Eswayah, A.S., Smith, T.J. and Gardiner, P.H., 2016, Microbial transformations of selenium species of relevance to bioremediation. Applied and Environmental Microbiology, 82, 4848-4859. https://doi.org/10.1128/AEM.00877-16
  13. Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H. and Ikeda, H., 2003, A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump, Applied Geochemistry, 18, 1267-1278. https://doi.org/10.1016/S0883-2927(03)00011-8
  14. Fukushi, K., Sato, T., Yanase, N., Minato, J. and Yamada, H., 2004, Arsenate sorption on schwertmannite. American Mineralogist, 89, 1728-1734. https://doi.org/10.2138/am-2004-11-1219
  15. Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S. and Traina, S.J., 2004, Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica et Cosmochimica Acta, 68, 2119-2128. https://doi.org/10.1016/j.gca.2003.10.038
  16. Gault, A.G., Cooke, D.R., Townsend, A.T., Charnock, J.M. and Polya, D.A., 2005, Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania. Science of the Total Environment, 345, 219-228. https://doi.org/10.1016/j.scitotenv.2004.10.030
  17. Hammarstrom, J.M., Seal Ii, R. R., Meier, A.L. and Kornfeld, J.M., 2005, Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology, 215, 407-431. https://doi.org/10.1016/j.chemgeo.2004.06.053
  18. Hayes, K.F., Roe, A.L., Brown, Jr, G.E., Hodgson, K.O., Leckie, J.O. and Parks, G.A., 1987, In situ X-ray absorption study of surface complexes: Selenium oxyanions on α-FeOOH. Science, 238, 783-786. https://doi.org/10.1126/science.238.4828.783
  19. Kim, E.J. and Baek, K., 2015, Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate. Journal of Hazardous Materials. 284, 19-26. https://doi.org/10.1016/j.jhazmat.2014.11.004
  20. Kim, H.-J. and Kim, Y., 2021, Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere, 269, 128720. https://doi.org/10.1016/j.chemosphere.2020.128720
  21. Kim, Y., 2018, Effects of different oxyanions in solution on the precipitation of jarosite at room temperature, Journal of Hazardous Materials, 353, 118-126. https://doi.org/10.1016/j.jhazmat.2018.04.016
  22. Kim, Y. and Kirkpatrick, R.J., 2004, An investigation of phosphate adsorbed on aluminum oxyhydroxide and oxide phases by nuclear magnetic resonance. European Journal of Soil Science, 55, 243-251. https://doi.org/10.1046/j.1365-2389.2004.00595.x
  23. Lee, S.O., Tran, T., Jung, B.H., Kim, S.J. and Kim, M.J., 2007, Dissolution of iron oxide using oxalic acid. Hydrometallurgy, 87, 91-99. https://doi.org/10.1016/j.hydromet.2007.02.005
  24. Manceau, A. and Charlet, L., 1994, The mechanism of selenate adsorption on goethite and hydrous ferric oxide. Journal of Colloid and Interface Science. 168, 87-93. https://doi.org/10.1006/jcis.1994.1396
  25. McBride, M.B., 1994, Environmental chemistry of soils. Oxford University Press, New York, 406 pp.
  26. Muller, K., Ciminelli, V.S.T., Dantas, M.S. and Willscher, S.A., 2010. Comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Research, 44, 5660-5672. https://doi.org/10.1016/j.watres.2010.05.053
  27. Murad, E. and Rojik, P., 2004, Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. In 3rd Australian-New Zealand Soils Conference.
  28. Ouyang, B., Lu, X., Liu, H., Li, J., Zhu, T., Zhu, X., Lu, J. and Wang, R., 2014, Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization. Geochimica et Cosmochimica Acta, 124, 54-71. https://doi.org/10.1016/j.gca.2013.09.020
  29. Paikaray, S., Gottlicher, J. and Peiffer, S., 2011, Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway. Chemical Geology 283, 134-142. https://doi.org/10.1016/j.chemgeo.2010.08.011
  30. Panias, D., Taxiarchou, M., Paspaliaris, I. and Kontopoulos, A., 1996, Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy, 42, 257-265. https://doi.org/10.1016/0304-386X(95)00104-O
  31. Pedersen, H.D., Postma, D. and Jakobsen, R., 2006, Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta, 70, 4116-4129. https://doi.org/10.1016/j.gca.2006.06.1370
  32. Peng, L., Liu, P., Feng, X., Wang, Z., Cheng, T., Liang, Y., Lin, Z. and Shi, Z., 2018, Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochimica et Cosmochimica Acta, 224, 282-300. https://doi.org/10.1016/j.gca.2018.01.014
  33. Sahoo, P.K., Equeenuddin, S.M. and Powell, M.A., 2016, Trace elements in soils around coal mines: current scenario, impact and available techniques for management. Current Pollution Reports, 2, 1-14. https://doi.org/10.1007/s40726-016-0025-5
  34. Schwertmann, U. and Carlson, L., 2005, The pH-dependent transformation of schwertmannite to goethite at 25 C. Clay Minerals, 40, 63-66. https://doi.org/10.1180/0009855054010155
  35. Sidenko, N.V. and Sherriff, B.L., 2005, The attenuation of Ni, Zn and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada, Applied Geochemistry, 20, 1180-1194. https://doi.org/10.1016/j.apgeochem.2005.01.012
  36. Smeaton, C.M., Fryer, B.J. and Weisener, C.G., 2009, Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite. Environmental Science & Technology, 43, 8086-8091. https://doi.org/10.1021/es901629c
  37. Smeaton, C.M., Walshe, G.E., Smith, A.M., Hudson-Edwards, K.A., Dubbin, W.E., Wright, K., Beale, A.M., Fryer, B.J. and Weisener, C.G., 2012, Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by Shewanella putrefaciens CN32. Environmental Science & Technology, 46, 12823-12831. https://doi.org/10.1021/es3021809
  38. Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I. and Kontopoulos, A., 1997, Removal of iron from silica sand by leaching with oxalic acid. Hydrometallurgy, 46, 215-227. https://doi.org/10.1016/S0304-386X(97)00015-7
  39. Valente, T., Grande, J.A., de la Torre, M.L., Santisteban, M. and Ceron, J.C, 2013, Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Applied Geochemistry, 39, 11-25. https://doi.org/10.1016/j.apgeochem.2013.09.014
  40. Welch, S.A., Kirste, D., Christy, A.G., Beavis F.R. and Beavis, S.G., 2008, Jarosite dissolution II - Reaction kinetics, stoichiometry and acid flux. Chemical Geology, 254, 73-86. https://doi.org/10.1016/j.chemgeo.2008.06.010
  41. Williams, A.G.B. and Scherer, M.M., 2004, Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environmental Science & Technology, 38, 4782-4790. https://doi.org/10.1021/es049373g