DOI QR코드

DOI QR Code

Ab-initio Calculations of Mg Silicate and (hydr)oxide Core-level Absorption Spectra

Mg 규산염 및 (수)산화물에 대한 제일원리 내각준위 흡수 스펙트럼 계산 연구

  • Son, Sangbo (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 손상보 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2021.06.17
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

Magnesium (Mg) present in carbonate minerals as impurities has been used as a geochemical proxy to infer the environmental conditions where the minerals precipitated. The reliability of Mg geochemical proxies requires fundamental understanding of Mg incorporation into minerals based on accurate speciation of Mg 2+ in the crystal structure, which is determined mainly by application of X-ray absorption spectroscopy (XAS). However, high uncertainties are involved in interpreting the XAS spectra of minerals containing trace amount of Mg 2+. Because density function theory (DFT) can predict an XAS spectrum for a crystal structure, DFT calculations can reduce the uncertainties in the interpretation of the XAS spectrum. In this study, we calculated ab initio Mg K-edge absorption spectra of Mg silicates and (hydr)oxides based on DFT and analyzed the correlation between the calculated spectra and Mg structural parameters. Our ab initio Mg K-edge absorption spectra well reproduced the key features of the experimental spectra. The absorption-edge positions of the calculated spectra showed the weak positive correlation with the average Mg-O bond distance or Mg effective coordination number. The current study shows that DFT-based core-level spectroscopy method is a powerful tool in providing standard Mg K-edge spectra of diverse Mg minerals and determining the Mg chemical species within carbonate minerals.

마그네슘(magnesium; Mg)은 탄산염 광물이 침전된 과거의 환경 조건을 유추하기 위한 지화학 지시자로 활용되어오고 있다. Mg를 신뢰도 높은 지화학 지시자로 활용하기 위해서는 Mg의 화학종을 근거로 한 Mg의 광물 함유 기작이 반드시 규명되어야만 하며, 관련 실험 연구들은 주로 고해상도(high resolution)의 방사광가속기(synchrotron) X-선 흡수 분광(X-ray absorption spectroscopy; XAS) 기법을 통해 Mg의 화학종을 유추한다. 그러나, Mg가 미량 함유된 광물의 XAS 스펙트럼 해석의 높은 불확실성 때문에 화학종 유추가 어려운 경우가 많다. 양자역학 밀도범함수이론(density functional theory; DFT)은 결정구조에 대한 흡수 스펙트럼을 예측할 수 있기 때문에, XAS 스펙트럼 해석의 불확실성을 줄일 수 있다. 이번 논문에서는 DFT 기반의 제일원리 내각 준위 분광법(ab initio core-level spectroscopy method)을 통해 Mg 규산염 및 (수)산화광물에 대한 Mg K-edge 흡수 스펙트럼을 계산하여 Mg의 배위 결합 환경을 나타내는 구조 인자와의 상관관계를 분석하였다. 계산 결과, DFT 계산으로 얻은 Mg 규산염 및 (수)산화물의 이론 Mg K-edge 흡수 스펙트럼은 기존 XAS 실험으로 얻어진 스펙트럼의 주요 형태를 상당 부분 재현해낼 수 있었다. 계산으로 얻은 광물의 제일원리 Mg K-edge 흡수 스펙트럼의 흡수-끝(absorption edge)과 평균 Mg-O 결합거리 및 Mg 유효배위수를 비교 분석한 결과, 약한 양의 상관관계를 보여주었다. 이번 연구 결과는 DFT 계산이 다양한 광물 내 Mg의 화학종에 대한 표준 스펙트럼 세트를 제공할 수 있는 강력한 도구임을 보여주며, 추후 탄산염 광물에 함유된 정확한 Mg의 화학종을 동정하는데 DFT 계산이 큰 역할을 할 수 있음을 제시한다.

Keywords

Acknowledgement

이 연구는 2020년도 강원대학교 대학회계 연구비를 지원받았으며, 컴퓨터 계산은 KISTI 슈퍼컴퓨터 자원(KSC-2020-CRE-0050)을 일부 사용하였다. 손상보 학생은 한국연구재단의 박사과정생 연구장려금 지원사업(2019R1A6A3A13096456)의 지원을 받았다. 원고에 대한 유익한 조언을 주신 익명의 심사위원 두 분에게 감사드린다.

References

  1. Alvarez, C.C., Quitte, G., Schott, J. and Oelkers, E.H., 2020, Experimental determination of Ni isotope fractionation during Ni adsorption from an aqueous fluid onto calcite surfaces. Geochimica et Cosmochimica Acta, 273, 26-36. https://doi.org/10.1016/j.gca.2020.01.010
  2. Alvarez, C.C., Quitte, G., Schott, J. and Oelkers, E.H., 2021, Nickel isotope fractionation as a function of carbonate growth rate during Ni coprecipitation with calcite. Geochimica et Cosmochimica Acta, 299, 184-198. https://doi.org/10.1016/j.gca.2021.02.019
  3. Barker, S., Cacho, I., Benway, H. and Tachikawa, K., 2005, Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews, 24, 821-834. https://doi.org/10.1016/j.quascirev.2004.07.016
  4. Blochl, P.E., 1994, Projector augmented-wave method. Physical Review B, 50, 17953. https://doi.org/10.1103/PhysRevB.50.17953
  5. Bostrom, D., 1987, Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. American Mineralogist, 72, 965-972.
  6. Catti, M., Ferraris, G., Hull, S. and Pavese, A., 1995, Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study. Physics and Chemistry of Minerals, 22, 200-206. https://doi.org/10.1007/BF00202300
  7. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K. and Payne, M.C., 2005, First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220, 567-570.
  8. Cusack, M., Perez-Huerta, A., Janousch, M. and Finch, A. A., 2008, Magnesium in the lattice of calcite-shelled brachiopods. Chemical Geology, 257, 59-64. https://doi.org/10.1016/j.chemgeo.2008.08.007
  9. De Groot, F.M.F., 2007, Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra. AIP Conference Proceedings, 882, 37-43.
  10. Dong, S. and Wasylenki, L.E., 2016, Zinc isotope fractionation during adsorption to calcite at high and low ionic strength. Chemical Geology, 447, 70-78. https://doi.org/10.1016/j.chemgeo.2016.10.031
  11. Dzikowski, T.J., Groat, L.A. and Grew, E.S., 2007, The geometric effects of VFe2+ for VMg substitution on the crystal structures of the grandidierite-ominelite series. American Mineralogist, 92, 863-872. https://doi.org/10.2138/am.2007.2275
  12. Finch, A.A. and Allison, N., 2007, Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine, 71, 539-552. https://doi.org/10.1180/minmag.2007.071.5.539
  13. Finch, A.A. and Allison, N., 2008, Mg structural state in coral aragonite and implications for the paleoenvironmental proxy. Geophysical Research Letters, 35, L08704. https://doi.org/10.1029/2008GL033543
  14. Fink, J., 1992, Transmission electron energy-loss spectroscopy. Unoccupied Electronic States (eds. Fuggle, J. C., Inglesfield, J. E.), Springer-Verlag, 203-241.
  15. Foster, L.C., Finch, A.A., Allison, N., Andersson, C. and Clarke, L.J., 2008, Mg in aragonitic bivalve shells: Seasonal variations and mode of incorporation in Arctica islandica. Chemical Geology, 254, 113-119. https://doi.org/10.1016/j.chemgeo.2008.06.007
  16. Fukushi, K., Suzuki, Y., Kawano, J., Ohno, T., Ogawa, M., Yaji, T. and Takahashi, Y., 2017, Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling. Geochimica et Cosmochimica Acta, 213, 457-474. https://doi.org/10.1016/j.gca.2017.06.040
  17. Gaetani, G.A. and Cohen, A.L., 2006, Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochimica et Cosmochimica Acta, 70, 4617-4634. https://doi.org/10.1016/j.gca.2006.07.008
  18. Gao, S.P., Pickard, C.J., Perlov, A. and Milman, V., 2009, Core-level spectroscopy calculation and the plane wave pseudopotential method. Journal of Physics Condensed Matter, 21, 104203. https://doi.org/10.1088/0953-8984/21/10/104203
  19. Hazen, R.M., 1976, Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase. American Mineralogist, 61, 266-271.
  20. Hoppe, R., 1979, Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift Fur Kristallographie-Crystalline Materials, 150, 23-52. https://doi.org/10.1524/zkri.1979.150.14.23
  21. Hugh-Jones, D.A. and Angel, R.J., 1994, A compressional study of MgSiO3 orthoenstatite up to 8.5 GPa. American Mineralogist, 79, 405-410.
  22. Ildefonse, P., Calas, G., Flank, A.M. and Lagarde, P., 1995, Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 97, 172-175.
  23. Lear, C.H., Elderfield, H. and Wilson, P.A., 2000, Cenozoic Deep-Sea Temperatures and Global from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287, 269-272. https://doi.org/10.1126/science.287.5451.269
  24. Levien, L. and Prewitt, C.T., 1981, High-pressure structural study of diopside. American Mineralogist, 66, 315-323.
  25. Li, D., Peng, M. and Murata, T., 1999, Coordination and local structure of magnesium in silicate minerals and glasses: Mg K-edge XANES study. The Canadian Mineralogist, 37, 199-206.
  26. Little, S.H., Sherman, D.M., Vance, D. and Hein, J.R., 2014, Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth and Planetary Science Letters, 396, 213-222. https://doi.org/10.1016/j.epsl.2014.04.021
  27. Mizoguchi, T., Tanaka, I., Gao, S.P. and Pickard, C.J., 2009, First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method. Journal of Physics Condensed Matter, 21, 104204. https://doi.org/10.1088/0953-8984/21/10/104204
  28. Monkhorst, H. and Pack, J., 1976, Special points for Brillouin zone integrations. Physical Review B, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  29. Pavese, A., Artioli, G. and Prencipe, M., 1995, X-ray single-crystal diffraction study of pyrope in the temperature range 30-973 K. American Mineralogist, 80, 457-464. https://doi.org/10.2138/am-1995-5-606
  30. Perdew, J., Burke, K. and Ernzerhof, M., 1996, Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  31. Pickard, C.J., 1997, Ab Initio Electron Energy Loss Spectroscopy, Ph.D. dissertation, University of Cambridge, 151p.
  32. Redfern, S.A., Harrison, R.J., O'Neill, H.S.C. and Wood, D. R., 1999, Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 ℃ from in situ neutron diffraction. American Mineralogist, 84, 299-310. https://doi.org/10.2138/am-1999-0313
  33. Saenger, C. and Wang, Z., 2014, Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies. Quaternary Science Reviews, 90, 1-21. https://doi.org/10.1016/j.quascirev.2014.01.014
  34. Son, S., Li, W., Lee, J.Y. and Kwon, K.D., 2020, On the coordination of Mg2+ in aragonite: Ab-initio absorption spectroscopy and isotope fractionation study. Geochimica et Cosmochimica Acta, 286, 324-335. https://doi.org/10.1016/j.gca.2020.07.023
  35. Staroverov, V.N., Scuseria, G.E., Tao, J. and Perdew, J.P., 2004, Tests of a ladder of density functionals for bulk solids and surfaces. Physical Review B-Condensed Matter and Materials Physics, 69, 1-11.
  36. Tipper, E.T., Galy, A., Gaillardet, J., Bickle, M.J., Elderfield, H. and Carder, E.A., 2006, The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios. Earth and Planetary Science Letters, 250, 241-253. https://doi.org/10.1016/j.epsl.2006.07.037
  37. Trcera, N., Cabaret, D., Rossano, S., Farges, F., Flank, A. M. and Lagarde, P., 2009, Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure. Physics and Chemistry of Minerals, 36, 241-257. https://doi.org/10.1007/s00269-008-0273-z
  38. Vanderbilt, D., 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
  39. Yamamoto, T., 2008, Assignment of pre-edge peaks in K edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?. X-Ray Spectrometry: An International Journal, 37, 572-584. https://doi.org/10.1002/xrs.1103
  40. Yoshimura, T., Tamenori, Y., Iwasaki, N., Hasegawa, H., Suzuki, A. and Kawahata, H., 2013, Magnesium K-edge XANES spectroscopy of geological standards. Journal of Synchrotron Radiation, 20, 734-740. https://doi.org/10.1107/S0909049513016099
  41. Yoshimura, T., Tamenori, Y., Takahashi, O., Nguyen, L.T., Hasegawa, H., Iwasaki, N. and Kawahata, H., 2015, Mg coordination in biogenic carbonates constrained by theoretical and experimental XANES. Earth and Planetary Science Letters, 421, 68-74. https://doi.org/10.1016/j.epsl.2015.03.048