DOI QR코드

DOI QR Code

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag

전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구

  • Kim, Ji-Seok (Dept. of Civil & Environmental System Eng., Hanyang University) ;
  • Park, Eon-Sang (Dept. of Construction System Eng., Soongsil Cyber University) ;
  • Ann, Ki-Yong (Dept. of Civil & Environmental System Eng., Hanyang University) ;
  • Cho, Won-Jung (Dept. of Civil & Environmental System Eng., Hanyang University)
  • 김지석 (한양대학교 건설환경시스템공학과) ;
  • 박언상 (숭실사이버대학교 건설시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과) ;
  • 조원정 (한양대학교 건설환경시스템공학과)
  • Received : 2021.03.09
  • Accepted : 2021.05.03
  • Published : 2021.06.30

Abstract

Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

본 연구에서는 건설 산업의 고도화에 따라 대량 발생하는 철강 슬래그 및 페로니켈슬래그의 활용을 위해 모르타르 배합에 혼입하여 실험적 연구를 진행하였다. 물의 흡수율이 낮은 BOF와 표면이 매끄러운 성질을 가진 FNS를 시멘트에 치환하면, 희석효과(dilution effect) 작용으로 플로 값과 응결시간이 증가하였다. 다만, BOF를 표준사 대비 10% 초과하여 혼입할 경우 재료 분리 현상(segregation)이 발생하였고, 이에 다량의 혼입 배합은 실험에서 제외하였다. BOF 잔골재와 FNS 혼입 모르타르는 응결 지연으로 인한 수화열 감소로 종결이 완료된 후 길이변화가 발생하지 않았다. BOF 잔골재를 혼입한 모르타르의 압축강도는 표준사와 시멘트만을 혼입한 모르타르 강도 보다 감소되었지만 FNS와 함께 혼입한 배합의 경우 양생 일이 증가함에 따라 압축강도도 증가하였다. BOF 잔골재를 혼입한 B10F0 및 B10F20 모르타르에서는 수화가 진행되어 BOF 원재료 XRD에서 관찰할 수 있었던 larnite, mayenite, wuestite 클링커는 거의 관찰되지 않았지만, FNS의 낮은 수화 반응성으로 FNS의 클링커는 관찰되었다. 주사전자현미경 분석 결과 수화결정체로 존재하지 않고 수화가 진행 중인 FNS를 확인할 수 있었으며 이를 통해 FNS의 잠재수경성을 확인하였다. FNS를 첨가하지 않은 시편의 경우 BOF 골재가 겔이나 침상결정이 아닌 전체가 괴상으로 존재하였으며, 인산화칼슘(calcium phosphate) 형성을 확인하였다. 다만, 전로슬래그를 혼입할 경우 내부 공극은 밀실함이 다소 저하되었으며, 추후 BOF를 잔골재 또는 건설 재료로 활용할 경우 적정 배합비 선정이 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2019년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수해된 연구임(20193210100050, 표층처분시설의 건설 구조체 및 장기 성능 감시 기술개발).

References

  1. Cho, W.J., Ann. K.Y. (2020a). A study on the Hydration characteristics and fundamental properties of ternary blended cement using ferronickel slag and fly ash, Journal of the Korea Concrete Insitutue, 32(1), 27-35. https://doi.org/10.4334/JKCI.2020.32.1.027
  2. Cho, W.J., Kim, H.S., Ann, K.Y. (2020b). A study on the hydration characteristics and fundamental properties of ternary blended cement using ferronickel slag, Journal of the Korean Recycled Construction Resources Institute, 8(1), 39-48. https://doi.org/10.14190/JRCR.2020.8.1.39
  3. Cho, W.J., Park, E.S., Jung, H.S., Ann, K.Y. (2020c). Durability characteristics of ternary cement matrix using ferronickel slag according to the alkali-activators, Journal of the Korean Recycled Construction Resources Institute, 8(2), 24-34.
  4. Choi, H.K., Lee, J.M., Hong, J.H., Seo, K.H., Park, M.Y. (2017). "Fundamental properties of concrete according to the fineness of ferronickel slag," Proceedings of Korea Concrete Institute, 29(1), 491-492.
  5. Choi, Y.W., Park, M.S., Bae, S.H., Lee, H.H., Cho, B.S. (2010). "Properties of water granulated ferro-nickel slag as fine aggregate for concrete," Proceedings of Korea Society of Civil Engineering, 1462-1465.
  6. Dippenaar, R. (2005). Industrial uses of slag(the use and re-use of iron and steelmaking slags), Ironmaking & Steelmaking, 32(1), 35-46. https://doi.org/10.1179/174328105X15805
  7. Gao, X.F., Zhang, H.Y., Yang, X.Y., Li, K.Z. (2017). The application of ferronickel compound admixture in concrete, China J. Build. Mater. Tech., 26(01), 23-26.
  8. Huang, Y., Wang, Q., Shi, M. (2017). Characteristics and reactivity of ferronickel slag powder, Construction and Building Materials, 156, 773-789. https://doi.org/10.1016/j.conbuildmat.2017.09.038
  9. Karmacharya, M.R., Uchida, I., Idemitsu, T. Takayama, S.I. (1979). On the studies of utilisation of converter furnace slag in road bases, In Proceedings of the Japan Society of Civil Engineers, 1979(282), 101-113. https://doi.org/10.2208/jscej1969.1979.282_101
  10. Katsiotis, N.S., Tsakiridis, P.E., Velissariou, D., Katsiotis, M.S., Alhassan, S.M., Beazi, M. (2015). Utilization of ferronickel slag as additive in portland cement: a hydration leaching study, Waste and Biomass Valorization, 6(2), 177-189. https://doi.org/10.1007/s12649-015-9346-7
  11. Kim, H., Lee, C.H., Ann, K.Y. (2019). Feasibility of ferronickel slag powder for cementitious binder in concrete mix, Construction and Building Materials, 207, 693-705. https://doi.org/10.1016/j.conbuildmat.2019.02.166
  12. Kim, H.S., Ann, K.Y. (2018). A study on the hydration behavior and porosimetry of ferronickel slag powder in cement paste, Journal of the Korea Concrete Institute, 31(2), 181-189. https://doi.org/10.4334/jkci.2019.31.2.181
  13. KS F 2527. (2020). Concrete Aggregate, Korean Standards Association, Seoul, Korea.
  14. KS F 2563. (2020). Ground Granulated Blast-Furnace Slag for Use in Concrete, Korean Standard Association, Seoul, Korea.
  15. KS L 5111. (2017). Flow Table for Use in Tests of Hydraulic Cement, Korean Standard Association, Seoul, Korea.
  16. KS L 5210. (2017). Portland Blast-Furnace Slag Cement, Korean Standard Association, Seoul, Korea.
  17. Lemonis, N., Tsakiridis, P.E., Katsiotis, N.S., Antiohos, S., Papageorgiou, D., Katsiotis, M.S., Beazi-Katsioti, M. (2015). Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan, Construction and Building Materials, 81, 130-139. https://doi.org/10.1016/j.conbuildmat.2015.02.046
  18. Lim, H.S., Min, T.B., Kim. H.Y. (2019). Characteristics of electric arc furnace oxidized slag and domestic and international research terend, Magazine of Recycled Construction Resources, 14(2), 40-47.
  19. Navarro, C., Diaz, M., Villa-Garcia, M.A. (2010). Physico- chemical characterization of steel slag. study of its behavior under simulated environmental conditions, Environmental Science & Technology, 44(14), 5383-5388. https://doi.org/10.1021/es100690b
  20. Qi, A., Liu, X., Wang, Z., Chen, Z. (2020). Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder, Construction and Building Materials, 231, 117120. https://doi.org/10.1016/j.conbuildmat.2019.117120
  21. Rahman, M.A., Sarker, P.K., Shaikh, F.U.A., Saha, A.K. (2017). Soundness and compressive strength of portland cement blended with ground granulated ferronickel slag, Construction and Building Materials, 140, 194-202. https://doi.org/10.1016/j.conbuildmat.2017.02.023
  22. Song, Y.L., Park, J.H., Jung, S.W., Lee, M.H., Han, M.C. Han, C.G. (2014). "Expanding properties of the mortar with high-volume steel slag aggregate," Proceedings of Architectural Institute of Korea, 34(2), 583-584.
  23. Tsakiridis, P.E., Papadimitriou, G.D., Tsivilis, S., Koroneos, C. (2008). Utilization of steel slag for portland cement clinker production, Journal of Hazardous Materials, 152(2), 805-811. https://doi.org/10.1016/j.jhazmat.2007.07.093