DOI QR코드

DOI QR Code

한반도 온대중부 낙엽활엽수림 장기생태조사지에서 15년간 하층식생 군집의 시계열적 변화

Sequential Changes in Understory Vegetation Community for 15 Years in the Long-Term Ecological Research Site in Central Temperate Broad-leaved Deciduous Forest of Korea

  • 김민수 (국립산림과학원 산림생태연구과) ;
  • 윤순진 (국립산림과학원 산림생태연구과) ;
  • 박찬우 (국립산림과학원 산림생태연구과) ;
  • 최원일 (국립산림과학원 산림생태연구과) ;
  • 천정화 (국립산림과학원 산림ICT연구센터) ;
  • 임종환 (국립산림과학원 산림생태연구과) ;
  • 배관호 (경북대학교 생태환경시스템학부)
  • Kim, Min-Su (Forest Ecology Division, National Institute of Forest Science) ;
  • Yun, Soon-Jin (Forest Ecology Division, National Institute of Forest Science) ;
  • Park, Chan-Woo (Forest Ecology Division, National Institute of Forest Science) ;
  • Choi, Won-Il (Forest Ecology Division, National Institute of Forest Science) ;
  • Chun, Jung-Hwa (Forest ICT Research Center, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Forest Ecology Division, National Institute of Forest Science) ;
  • Bae, Kwan-Ho (Department of Ecology Environment System, Kyungpook National University)
  • 투고 : 2020.06.09
  • 심사 : 2021.06.07
  • 발행 : 2021.06.30

초록

본 연구는 온대 낙엽활엽수림의 하층식생 변화를 구명하여 산림생태계의 체계적 보전과 효율적 관리를 위한 기초자료를 제공하기 위하여 수행하였다. 2003년 경기도 포천 광릉 숲에 1ha 크기의 영구조사구를 설치하였으며, 영구조사구는 10×10m 크기의 부조사구 100개로 구성되었다. 영구조사구의 임분동태 및 하층식생은 2003년부터 2018년까지 5년 간격으로 조사되었다. 조사구에 출현하는 관속식물은 56과 128속 176종 18변종 4품종 1아종으로 총 199분류군 이었다. 관목층과 초본층의 종수는 시간이 경과함에 따라 모두 감소하는 경향을 보였다. MRPP-test 분석 결과 관목층의 종조성은 2008년-2013년을 제외한 모든 연도에서 유의한 차이가 있는 것으로 나타났으며, 초본층의 경우 모든 연도에서 유의한 차이가 있는 것으로 나타났다. 평균 중요치에서 관목층은 참회나무(18.23%), 당단풍나무(16.48%), 작살나무(13.85%)가 우점하는 것으로 분석되었으며, 초본층에서는 단풍취(23.41%), 애기나리(9.45%), 주름조개풀(5.62%)이 우점하는 것으로 나타났다. 관목층은 상층 임분의 흉고단면적과 임분밀도가 높을수록 청미래덩굴, 청괴불나무, 고광나무의 풍부도가 높았으며, 흉고단면적과 임분밀도가 낮을수록 당단풍나무, 물참대, 산뽕나무, 산딸나무의 풍부도가 높았다. 시간이 경과할수록 흉고단면적과 임분밀도는 초본층에 미치는 영향이 적은 반면, 관목층의 참회나무와 당단풍나무의 피도는 초본층종 구성에 미치는 영향이 큰 것으로 분석되었다. 결론적으로 광릉 장기생태조사지의 하층은 종수가 지속적으로 감소하고 있으며, 이 과정은 상층 임분의 종다양성과 흉고단면적, 임분밀도가 하층식생 종조성에 영향을 주는 것으로 판단되었다.

This study aims to provide basic data for the systematic conservation and efficient management of forest ecosystems by analyzing changes in understory vegetation of temperate broad-leaved deciduous forests. One-hectare permanent survey plot, consisting of 100 subplots sized 10 × 10 meters, was installed in Gwangneung forest in Pocheon, Gyeonggi-do in 2003. The state of stands and the understory vegetation in the permanent survey plot were examined at a 5-year interval from 2003 to 2018. The vascular plants found in the survey area were 56 families, 128 genera, 176 species, 18 variants, 4 varieties, and 1 subspecies, for a total of 199 taxa. The number of species in both the shrub layer and the herbaceous layer showed a tendency to decrease with time. The MRPP-tests showed a significantly differing species composition of the shrub layer in all years except 2008-2013, whereas significant differences were found in all years concerning the herbaceous layer. As for the average importance value, Euonymus oxyphyllus (18.23%), Acer pseudosieboldianum (16.48%), and Callicarpa japonica (13.85%) were dominant in the shrub layer, while Ainsliaea acerifolia (23.41%), Disporum smilacinum (9.45%), and Oplismenus undulatifolius (5.62%) were dominant in the herbaceous layer. In the shrub layer, the richness of Smilax china, Lonicera subsessilis, and Philadelphus schrenkii was high when the basal area and the stand density of an upper layer were high. By contrast, smaller basal area and stand density were associated with the richness of Acer pseudosieboldianum, Deutzia glabrata, Morus bombycis, and Cornus kousa. Furthermore, it was found out that the impact of the basal area and the stand density on the herbaceous layer decreased over time, while the herb layer's species composition was greatly affected by cover degrees of Euonymus oxyphyllus and Acer pseudosieboldianum in the shrub layer. In conclusion, the number of species in the understory vegetation in Gwangneung forest is continuously decreasing, thus implying that species diversity, basal area, and stand density of an upper layer can influence the species composition in understory vegetation.

키워드

과제정보

이 논문은 국립산림과학원 일반연구과제 "산림 장기생태정보 빅데이터 활용기반 구축 연구"에 의하여 연구되었음.

참고문헌

  1. Acharya, B.K., B. Chettri and L. Vijayan(2011) Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica. 37: 329-336. https://doi.org/10.1016/j.actao.2011.03.005
  2. Beatty, S.W.(2003) Habitat heterogeneity and maintenance of species in understory communities. In: F.S. Gilliam and M.R. Roberts(eds.), The Herbaceous Layer in Forests of Eastern North America. Oxford University Press, New York, pp.177-197.
  3. Bobiec, A., A. Reif and K. Ollerer(2018) Seeing the oakscape beyond the forest: A landscape approach to the oak regeneration in Europe. Environmental Biology of Fishes 33: 513-528.
  4. Braun-Blanquet, J.(1964) Plant sociology, Fundamentals of vegetation science(3rd ed.). Springer, Vienna, 865pp.
  5. Byeon, J.G., J.K. Shin, S.H. Oh and D.K. Kim(2016) The Plant Distribution of Protected Area for Forest Genetic Resource Conservation in the Korea National Baekdudaegan Arboretum, Gyeongsangbuk-do, South Korea. Korean Journal of Plant Resources 29(2): 204-224. (in Korean with English abstract) https://doi.org/10.7732/kjpr.2016.29.2.204
  6. Byeon, S.Y. and C.W. Yun(2018a) Community Structure and Vegetation Succession of Carpinus laxiflora Forest Stands in South Korea. Korean Journal of Environment and Ecology 32(2): 185-202. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2018.32.2.185
  7. Byeon, S.Y. and C.W. Yun(2018b) Comparison of Vegetation Structure between Natural Forest(Pinus densiflora Forest and Quercus mongolica Forest) and Larix kaempferi Forest in Mt. Janggunbong. Journal of Agriculture and Life Science 52(4): 31-45. (in Korean with English abstract) https://doi.org/10.14397/jals.2018.52.4.31
  8. Chapman, J.I. and R.W. McEwan(2018) The Role of Environmental Filtering in Structuring Appalachian Tree Communities: Topographic Influences on Functional Diversity Are Mediated through Soil Characteristics. Forests 9(1): 1-16. https://doi.org/10.3390/f9010001
  9. Chazdon, R.L.(2017) Landscape Restoration, Natural Regeneration, and the Forests of the Future. BioOne 102(2): 251-257.
  10. Cheon, K.I., J.H. Chun, H.M. Yang, J.H. Lim and J.H. Shin(2014) Changes of Understory Vegetation Structure for 10 Years in Long-Term Ecological Research Site at Mt. Gyebang. Journal of Korean Forest Society 103(1): 1-11. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2014.103.1.1
  11. Cheon, K.I., S.H. Joo, J.H. Sung, J.H. Chun and Y.G. Lee(2014) Understory Vegetation Structure by Altitude and Azimuth Slope and Indicator Species Analysis in Mt. Gyebang. Journal of Korean Forest Society 103(2): 165-174. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2014.103.2.165
  12. Chianucci, F., E. Minari, F. Most Jannatul, P. Merlini, A. Cutini, P. Corona and F. Mason(2016) Relationships between overstory and understory structure and diversity in semi-natural mixed floodplain forests at Bosco Fontana (Italy). iForest-Biogeosciences and Forestry 9(6): 919-926. https://doi.org/10.3832/ifor1789-009
  13. Cho, Y.C., S.H. Oh, B.Y. Koo and B.C. Lee(2012) Conservation of Gwangneung forest based on ecosystem changes. Journal of Korean Forest Society 46-49. (in Korean)
  14. Chun, J.H., J.H. Lim and D.K. Lee(2007) Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image. Journal of Korean Forest Society 96(5): 591-601.
  15. Chung, J.M., S.M. Hwang, Y.M. Kim, J.K. Shin and M.S. Kim(2010) Stand Structure and Dynamics in Forests around Nari Basin of Ulleung Island, Korea. Korean Journal of Agricultural and Forest Meteorology 12(10): 23-35. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.1.023
  16. Cingolani, A.M., M. Cabido, D.E. Gurvich, D. Renison and S. Diaz(2007) Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911-920. https://doi.org/10.1111/j.1654-1103.2007.tb02607.x
  17. Crawley, M.J.(1996) The Structure of Plant Communities. In: M.J. Crawley(ed.), Plant Ecology(2nd ed.), Blackwell, London, pp.1-50.
  18. Curtis, J.T. and R.P. McIntosh(1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476-496. https://doi.org/10.2307/1931725
  19. D'Orangeville, L., A. Bouchard and A. Cogliastro(2008) Post-agricultural forests: Landscape patterns add to stand-scale factors in causing insufficient hardwood regeneration. Forest Ecology and Management 255(5-6): 1637-1646. https://doi.org/10.1016/j.foreco.2007.11.023
  20. Dittrich, S., M. Hauck, M. Jacob, A. Rommerskirchen and C. Leuschner(2013) Response of ground vegetation and epiphyte diversity to natural age dynamics in a Central European mountain spruce forest. Journal of Vegetation Science 24: 675-687. https://doi.org/10.1111/j.1654-1103.2012.01490.x
  21. Donato, D.C., J.L. Campbell and J.F. Franklin(2012) Multiple successional pathways and precocity in forest development: can some forests be born complex? Journal of Vegetation Science 23(3): 576-584. https://doi.org/10.1111/j.1654-1103.2011.01362.x
  22. Fortunel, C., J.R. Lasky, M. Uriarte, R. Valencia, S.J. Wright, N.C. Garwood and N.J.B. Kraft(2018) Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecological Society of America 99(10): 2272-2283.
  23. Gaston, K.J.(2000) Global patterns in biodiversity. Nature 405: 220-227. https://doi.org/10.1038/35012228
  24. Halpern, C.B. and T.A. Spies(1995) Plant Species Diversity in Natural and Managed Forests of the Pacific Northwest. Ecological Applications 5(4): 913-934. https://doi.org/10.2307/2269343
  25. Herben, T. and D.E. Goldberg(2014) Community assembly by limiting similarity vs. competitive hierarchies: Testing the consequences of dispersion of individual traits. Journal of Ecology 102(1): 156-166. https://doi.org/10.1111/1365-2745.12181
  26. Hilmers, T., N. Friess, C. Bassler, M. Heurich, R. Brandl, H. Pretzsch, R. Seidl and J. Muller(2018) Biodiversity along temperate forest succession. Journal of Applied Ecology 55(6): 2756-2766. https://doi.org/10.1111/1365-2664.13238
  27. Jung, S.W., Y.C. Cho and H.G. Lee(2017) Community Characteristics and Biological Quality Assessment on Benthic Macroinvertebrates of Bongseonsa Stream in Gwangneung Forest, South Korea. Korean Journal of Environment and Ecology 31(6): 508-519. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2017.31.6.508
  28. Kang, C.(2002) A Study of the Jackknife Estimate. Journal of Industrial Science and Technology 34: 325-331.
  29. Kermavnar, J. and L. Kutnar(2020) Patterns of Understory Community Assembly and Plant Trait-Environment Relationships in Temperate SE European Forests. Diversity 12(3): 1-23.
  30. Kim, M.S., H.J. Cho, J.S. Kim, K.H. Bae and J.H. Chun(2018) The Classification of Forest Vegetation Types and species Composition in the Sector between Danmoknyeong and Guryongnyeong of Baekdudaegan. Korean Journal of Environment and Ecology 32(2): 176-184. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2018.32.2.176
  31. Kim, T.U., J.H. Sung, T.S. Kwon, J.H. Chun and M.Y. Shin(2013) Assessment of Productive Areas for Quercus acutissima by Ecoprovince in Korea Using Environmental Factors. Journal of Korean Forest Society 102(3): 437-445. (in Korean with English abstract)
  32. Ko, Y.J., J.Y. Kim, E.J. Kim, E.J. Kim, H.G. Seol, G.H. Park, G.Y. Chung and C.H. Ryu(2012) Treatment of Smilax china L. Root Extract for Improvement of Storage Stability of Mang-gae Rice Cake. Korean Journal of Food Preservation 19(2): 167-172. (in Korean with English abstract) https://doi.org/10.11002/KJFP.2012.19.2.167
  33. Koo, B.Y., J.K. Shin, Y.C. Cho and S.Y. Yang(2013) Soil seed bank diversity and relationship with ground vegetation in Gwangneung old-growth forest. Journal of Korean Forest Society 258-259. (in Korean)
  34. Korea Meteorological Administration(2019) Climate information(1999-2018). http://www.kma.go.kr (in Korean)
  35. Korea National Arboretum and The Plant Taxonomic Society of Korea(2007) A synonymic list of vascular plants in Korea. Korean National Arboretum, Pocheon, 560pp. (in Korean)
  36. Korean National Arboretum(2019a) Korea biodiversity information system. http://www.nature.go.kr (in Korean)
  37. Korean National Arboretum(2019b) Korea plant names index committee. http://www.nature.go.kr (in Korean)
  38. Korean National Arboretum(2020) Gwangneung forest biota introduction. https://kna.forest.go.kr (in Korean)
  39. Kulakowski, D., R. Seidl, J. Holeksa, T. Kuuluvainen, T.A. Nagel, M. Panayotov, M. Svoboda, S. Thorn, G. Vacchiano, C. Whitlock, T. Wohlgemuth and P. Bebi(2017) A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management 388: 120-131. https://doi.org/10.1016/j.foreco.2016.07.037
  40. Lee, J.H., H.J. Kwon, Y.H.M.Y. Kim, C.H. Lee and H.K. Song(2010) Vegetation Structures of Warm Temperate Evergreen Broad-leaved Forest in Gageodo, Korea. Journal of the Korean Society of Environmental Restoration Technology 13(6): 75-86. (in Korean with English abstract)
  41. Lee, T.B.(2003) Coloured Flora of Korean(I, II). Hyangmunsa, Seoul. (in Korean)
  42. Leps, J., F. De Bello, S. Lavorel and S. Berman(2006) Quantifying and interpreting functional diversity of natural communities: Practical considerations matter. Preslia. 78(4): 481-501.
  43. Lim, J.H., J.H. Shin, G.Z. Jin, J.H. Chun and J.S. Oh(2003) Forest Stand Structure, Site Characteristics and Carbon Budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2): 101-109.
  44. Liu, Y., G. Zhu, X. Hai, J. Li, Z. Shangguan, C. Peng and L. Deng(2020) Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecological Engineering 142: 1-13.
  45. Ma, W., S. Lei, Y. Sun and J. Grabosky(2019) Forest succession in post-agricultural Larix olgensis plantations in northeast China. Journal of Forestry Research 31: 2495-2505. https://doi.org/10.1007/s11676-019-00960-7
  46. Mason, N.W.H., F. De Bello, D. Mouillot, S. Pavoine and S. Dray(2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24(5): 794-806. https://doi.org/10.1111/jvs.12013
  47. McCune, B. and J.B. Grace(2002) Analysis of ecological communities(3rd ed.). MjM Software Design, Gleneden Beach, Oregon.
  48. McCune, B. and M.J. Mefford(2006) PC-ORD Multivariate Analysis of Ecological Data, Version 5.17. MjM Software Design, Gleneden Beach, Oregon.
  49. Mcgill, B.J., B.J. Enquist, E. Weiher and M. Westoby(2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21(4): 178-185. https://doi.org/10.1016/j.tree.2006.02.002
  50. MjM Software Design(2016) PC-ORD Multivariate Analysis of Ecological Data: Version 7. Gleneden Beach, Oregon.
  51. Mo, X.X., H. Zhu, Y.J. Zhang, J.W.F. Slik and J.X. Liu(2011) Traditional forest management has limited impact on plant diversity and composition in a tropical seasonal rainforest in SW China. Biological Conservation 144: 1832-1840. https://doi.org/10.1016/j.biocon.2011.03.019
  52. Mucina, L.(2018) Biome: Evolution of a crucial ecological and biogeographical concept. New Phytologist 222: 97-114. https://doi.org/10.1111/nph.15609
  53. Mueller-Dombois, D. and H. Ellenberg(2003) Aims and Methods of Vegetation Ecology. The Blackburn Press, New York, 547pp.
  54. Nugroho, A., J.S. Choi, B.M. Song and H.J. Park(2019) Effect of Ainsliaea acerifolia Extract on Anti-acetylcholinesterase and Peroxynitrite Scavenging and Analysis of Caffeoylquinic Acids. Korean Journal of Plant Resources 32(4): 270-274.
  55. Osnas, J.L., J.W. Lichstein, P.B. Reich and S.W. Pacala(2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340(6133): 741-744. https://doi.org/10.1126/science.1231574
  56. Palmer, M.W.(1991) Estimating Species Richness: The Second-order Jackknife Reconsidered. Ecology 72(4): 1512-1513. https://doi.org/10.2307/1941127
  57. Park, B.J., K.I. Cheon, J.J. Kim, S.H. Joo and J.G. Byeon(2018) Stand Structure of Long Term Monitoring Sites for Quercus mongolica in Mt. Myeonbong. Journal of Agriculture and Life Science 52(3): 133-144. (in Korean with English abstract) https://doi.org/10.14397/jals.2018.52.3.133
  58. Park, I.H. and K.J. Cho(2011) Synecological Characteristics and Vitality Analysis of the Berchemia berchemiaefolia Habitat. Journal of the Korean Society of Environmental Restoration Technology 14(2): 97-105. (in Korean with English abstract)
  59. Park, I.H. and Y.K. Seo(2002) Plot Size for Investigating Forest Community Structure(5)-Adequate Number of Plots for Tree and Shrub Strata in a Mixed Forest Community of Broad-Leaved Trees at Guryongsan Area-. Korean Journal of Environment and Ecology 15(4): 394-400. (in Korean with English abstract)
  60. Peck, J.E.(2010) Multivariate analysis for community ecologist: Step-by-Step using PC-ORD. MjM Software Design, Gleneden Beach, Oregon.
  61. Peterken, G.F.(1996) Natural Woodland: Ecology and Conservation in Northern Temperate Regions. Cambridge University Press, Cambridge.
  62. Raunkiaer, C.(1934) The life forms of plants and statistical plant geography. Clarendon Press, Oxford.
  63. Reich, P.B., M.B. Walters and D.S. Ellsworth(1997) From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America 94(25): 13730-13734. https://doi.org/10.1073/pnas.94.25.13730
  64. Roslin, T., B. Hardwick, V. Novotny, W.K. Petry, N.R. Andrew, A. Asmus, I.C. Barrio, Y. Basset, A.L. Boesing, T.C. Bonebrake, E.K. Cameron, W. Dattilo, D.A. Donose, P. Drozd, C.L. Gray, D.S. Hik, S.J. Hill, T. Hopkins, S. Huang, B. Koane, B. Larid-Hopkins, L. Laukkanen, O.T. Lewis, S. Milne, I. Mwesige, A. Nakamura, C.S. Nell, E. Nichols, A. prokurat, K. Sam, N.M. Schmidt, A. Slade, V. Slade, A. Suchankova, T. Teder, S. Van Nouhuys, V. Vandvik, A. Weissflog, V. Zhukovich and E.M. Slade(2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356(6339): 742-744. https://doi.org/10.1126/science.aaj1631
  65. Seidl, R., T.A. Spies, D.L. Peterson, S.L. Stephens and J.A. Hicke(2016) Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology 53: 120-129. https://doi.org/10.1111/1365-2664.12511
  66. Son, Y.H., C.D. Koo, C.S. Kim, P.S. Park, C.W. Yun and K.H. Lee(2016) Forest Ecology(1st ed.). Hyangmunsa, Seoul, 346pp. (in Korean)
  67. Souza, A.A., L.S. Galvao and J.R. Santos(2010) Relationships between Hyperion-derived vegetation indices, biophysical parameters, and elevation data in a Brazilian savannah environment. Remote Sensing Letters 1(1): 55-64. https://doi.org/10.1080/01431160903329364
  68. Spasojevic, M.J. and K.N. Suding(2012) Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology 100(3): 652-661. https://doi.org/10.1111/j.1365-2745.2011.01945.x
  69. Taylor, A.R., B. Gao and H.Y.H. Chen(2020) The effect of species diversity on tree growth varies during forest succession in the boreal forest of central Canada. Forest Ecology and Management 455: 1-10.
  70. Tepley, A.J., F.J. Swanson and T.A. Spies(2013) Fire-mediated pathways of stand development in Douglas-fir/western hemlock forests of the Pacific Northwest, USA. Ecology 94(8): 1729-1743. https://doi.org/10.1890/12-1506.1
  71. Tinya, F., S. Marialigeti, A. Bidlo and P. Odor(2019) Environmental drivers of the forest regeneration in temperate mixed forests. Forest Ecology and Management 433: 720-728. https://doi.org/10.1016/j.foreco.2018.11.051
  72. Van der Marrel, E.(2005) Vegetation Ecology. Blackwell Publishing Company, New Jersey, 395pp.
  73. Walter, H.(2012) Vegetation of the Earth and Ecological Systems of the Geo-biosphere(3rd ed.). Springer, Heidelberg, 274pp.
  74. Yao, L., Y. Ding, H. Xu, F. Deng, L. Yao, X. Ai and R. Zang(2020) Patterns of diversity change for forest vegetation across different climatic regions-A compound habitat gradient analysis approach. Global Ecology and Conservation 23: 1-14.
  75. Yu, H., W. Qi, C. Liu, L. Yang, L. Wang, T. Lv and J. Peng(2019) Different Stages of Aquatic Vegetation Succession Driven by Environmental Disturbance in the Last 38 Years. Water 11(7): 1412. https://doi.org/10.3390/w11071412
  76. Yun, S.J. and J.H. Chun(2018) Long-term ecological research on Korean forest ecosystems: The current status and challenges. Ecological Research 33: 1289-1302. https://doi.org/10.1007/s11284-018-1645-6