Cu Ions Removal Using Graphene Oxide and in-situ Spectroscopic Monitoring Method of Residual Cu Ions

산화 그래핀을 이용한 구리이온 흡착과 투과도 특성을 이용한 구리이온 농도 실시간 측정

  • Kim, Seungdu (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Ryou, Heejoong (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Oh, Hoon-Jung (BIT Micro Fab Research Center, Yonsei University) ;
  • Hwang, Wan Sik (Department of Materials Science and Engineering, Korea Aerospace University)
  • 김승두 (한국항공대학교 신소재공학과) ;
  • 류희중 (한국항공대학교 신소재공학과) ;
  • 오훈정 (연세대학교 비아이티마이크로팹연구소) ;
  • 황완식 (한국항공대학교 신소재공학과)
  • Received : 2021.06.08
  • Accepted : 2021.06.21
  • Published : 2021.06.30

Abstract

Various Cu ions are discharged into water from various industries, which results in a severe trouble for groundwater, soil, air, and eventually animals and humans. In this work, graphene oxide (GO) is introduced as a Cu removal absorber and the real-time monitoring method is demonstrated. The results show that GO is a very effective material to absorb Cu ions in the solution. In addition, the residual Cu ions in the solution is monitored via optical transmittance method, which well match with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) analysis.

Keywords

Acknowledgement

이 연구는 한국연구재단의 기초연구사업(과제번호 NRF- 2017R1A 2B2004986)의 지원을 받아 출간되었다.

References

  1. E. Alonso A., M. Callejon M., J. C. Jimenez S., and M. Ternero R., "Heavy metal extractable forms in sludge from wastewater treatment plants", Chemosphere, Vol. 47.7, pp. 765-775, 2002.
  2. Fenglian F., and Qi W., "Removal of heavy metal ions from wastewaters: a review", J. of environmental management Vol. 92.3, pp. 407-418, 2011. https://doi.org/10.1016/j.jenvman.2010.11.011
  3. Akpor O. B., and Muchie M., "Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications", International Journal of Physical Sciences, Vol. 5.12, pp. 1807-1817, 2010.
  4. Xiaolong C., Guolong H., and Jiade W., "Electrochemical reduction/oxidation in the treatment of heavy metal wastewater", J. of Metallurgical Engineering, Vol. 2.4, pp. 161-164, 2013.
  5. Shiva T., Bahar Forouzesh R., and Majid Baghdadi., "Semicontinuous enhanced electroreduction of Cr (VI) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption", Chemosphere, Vol. 251, pp. 126309, 2020. https://doi.org/10.1016/j.chemosphere.2020.126309
  6. Isik K., Tulin A., Tugba O., Idi l., and Olcay T., "Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes", J. of hazardous materials, Vol. 165.1-3, pp. 838-845, 2009. https://doi.org/10.1016/j.jhazmat.2008.10.065
  7. Kwan-Soo J., Sang-Woo K., and Bong-Ho Y., "Economic Evaluation and Environmental Assessment on Electrochemical Copper Recovery from IT Wastewater", J. of Korea Society of Waste Management, Vol. 30, pp. 625-631, 2013. https://doi.org/10.9786/kswm.2013.30.6.625
  8. A. G. El Samrani, B. S. Lartiges, and F. Villieras, "Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization", Water research, Vol. 42, 4-5, pp. 951-960, 2008. https://doi.org/10.1016/j.watres.2007.09.009
  9. Chang-Yan C., Jin Q., Wen-Sheng Y., Jun-Fa Z., Zi-Yu W., and Wei-Guo S., "Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism", Langmuir, Vol. 28.9, pp. 4573-4579, 2012. https://doi.org/10.1021/la300097y
  10. Kobya M., Demirbas E., Senturk E., and Incea M., "Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone", Bioresource technology, Vol. 96.13, pp. 1518-1521, 2005. https://doi.org/10.1016/j.biortech.2004.12.005
  11. Muhammad B., Jehanzeb A. S., Tayyab A., Syed M. H. G., Adnan A. T., Arshid P. H. H., and Qaisar M., "Waste biomass adsorbents for copper removal from industrial wastewater-a review", J. of hazardous materials, Vol. 263, pp. 322-333, 2013. https://doi.org/10.1016/j.jhazmat.2013.07.071
  12. Guixia Z., Jiaxing L., Xuemei R., Changlun C., and Xiangke W., "Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management", Environmental science & technology Vol. 45.24, pp. 10454-10462, 2011. https://doi.org/10.1021/es203439v
  13. Yanhui L., Qiuju D., Tonghao L., Xianjia P., Junjie W., Jiankun S., Yonghao W., Shaoling W., Zonghua W., Yanzhi X., and Linhua X., "Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes", Chemical Engineering Research and Design, Vol. 91.2, pp. 361-368, 2013. https://doi.org/10.1016/j.cherd.2012.07.007
  14. Jae-Soo S. and Eunmi C., "Selective Graphene Oxide Reduction Utilizing Photon Energy", Journal of the Semiconductor & Display Technology, Vol. 17.4, pp.16-20, 2018.
  15. Jun Ha L., "A Study of Dynamic Properties of Graphene-Nanoribbon Memory", Journal of the Semiconductor & Display Technology, Vol 14.2, pp.53-56, 2014. https://doi.org/10.5573/JSTS.2014.14.1.053
  16. Jun Ha L., "A Study of Nano Sensor based on Graphene Resonator", Journal of the Semiconductor & Display Technology, Vol 16.1, pp.102-105, 2017.
  17. Yongwoo K. and Won Hwang S., "Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer", Journal of the Semiconductor & Display Technology, Vol 20.1, pp.54.58, 2021.
  18. Jia-An Y., and M. Y. Chou, "Oxidation functional groups on graphene: Structural and electronic properties", Physical review B, Vol. 82.12, pp. 125403, 2010. https://doi.org/10.1103/physrevb.82.125403
  19. Elvin A., Volkan F., Muntazim M. K., Young Joo L., Clarissa A., and Volker A., "Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris", Nanomaterials, Vol. 9.8, pp. 1180, 2019. https://doi.org/10.3390/nano9081180
  20. Dinesh Pratap S., Animesh Kumar O., and Onkar Nath S., "Synthesis of different Cu(OH)2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route", J. of Physical Chemistry C, Vol. 113.9, pp. 3409-3418, 2009. https://doi.org/10.1021/jp804832g