DOI QR코드

DOI QR Code

Investigation of Thermal/hygrothermal Aging Effects on the Ignition Characteristics of Ti Metal-based Pyrotechnics and Construction of the Aging Models

열/수분노화로 인한 Ti 금속 기반의 파이로 물질의 점화 성능 변화와 노화 모델 제시

  • Oh, Juyoung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.12.02
  • Accepted : 2021.06.15
  • Published : 2021.06.30

Abstract

Titanium hydride potassium perchlorate (THPP) has played an important role as initiators of the propulsion system. However, the 'aging' may cause performance degradation and even give rise to a failure in the total system. In this study, various hygrothermal aging conditions were considered and the aging effects on thermodynamic and ignition characteristics of THPP are provided via thermal analysis and ignition measurements. Also, physical-chemical changes were identified by morphological analysis. In conclusion, thermal aging led to Eα decrease-high reactivity due to oxidizer decomposition whereas hygrothermal aging gave rise to an opposite tendency by fuel oxidation.

Titanium hydride potassium perchlorate (THPP)는 일반적으로 널리 사용되는 착화제로 추진 시스템에서 중요한 역할을 수행해오고 있지만, '노화'라는 현상으로 인하여 THPP의 요구 성능 변화, 심지어는 system failure가 초래될 수 있다. 본 연구에서는 다양한 상대습도 조건에서 노화된 THPP의 열역학적 특성 및 성능, 점화 특성 변화를 상세한 열분석과 점화 실험을 통해 밝혔다. 그리고 형태학적 분석과 조성 변화를 통해 노화에 따른 THPP의 물리·화학적인 변화 또한 확인하였다. 결론적으로, 열노화는 산화제 분해로 인하여 활성화 에너지 감소/반응성 증가로 이어지고 수분노화는 연료 산화로 인하여 활성화 에너지 증가/반응성 감소와 같은 경로를 따름을 최종적으로 확인해볼 수 있었다.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2020R1F1A1072007).

References

  1. Verga, A. and Paravan, C., "A Comparative Study of the Aging Behavior of Different Nano-Sized Aluminum Powders," In 8th European Conference for Aerospace Sciences (EUCASS 2019), Madrid, Spain, EUCASS 1-8, Jul. 2019.
  2. Oh, J., Ambekar, A. and Yoh, J.J., "The hygrothermal aging effects of titanium hydride potassium perchlorate for pyrotechnic combustion," Thermochimica Acta, Vol. 665, No. 13, pp. 102-110, 2018. https://doi.org/10.1016/j.tca.2018.05.019
  3. Yetter, R.A., Risha, G.A. and Son, S.F., "Metal particle combustion and nanotechnology," Proceedings of the Combustion Institute, Vol. 32, No. 2, pp. 1819-1838, 2009.
  4. Oh, J., Jang, S.G. and Yoh, J.J., "Towards understanding the effects of heat and humidity on ageing of a NASA standard pyrotechnic igniter," Scientific Reports, Vol. 9, No. 1, pp. 1-12, 2019. https://doi.org/10.1038/s41598-018-37186-2
  5. Harisivasri, P.K., Sivapirakasam, S.P., Soni, P., Surianarayanan, M. and Balasubramanian, K.R., "Thermal reaction studies and prediction of stoichiometry of pyrotechnic compositions using DSC and XRD methods," Thermochimica Acta, Vol. 675, No. 13, pp. 100-106, 2019. https://doi.org/10.1016/j.tca.2019.03.009
  6. Ulas, A. and Kuo, K.K., "Effect of aging on ignition delay times of a composite solid propellant under CO2 laser heating," Combustion Science and Technology, Vol. 127, No. 1-6, pp. 319-331, 1997. https://doi.org/10.1080/00102209708935699
  7. Sanborn, W., Boyd, D., Sorensen, D. and Quebral, A., "The Accelerated Aging of the Pyrotechnic Materials THPP and ZPP," In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, U.S.A., AIAA 2008-4720, Jul. 2008.
  8. Sorensen, D.N., Quebral, A.P., Baroody, E.E. and Sanborn, W.B., "Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium perchlorate," Journal of Thermal Analysis and Calorimetry, Vol. 85, No. 1, pp. 151-156, 2006. https://doi.org/10.1007/s10973-005-7365-5
  9. Sinha, S., Piekiel, N.W., Smith, G.L. and Morris, C.J., "Investigating aging effects for porous silicon energetic materials," Combustion and Flame, Vol. 181, No. 14, pp. 164-171, 2017. https://doi.org/10.1016/j.combustflame.2017.03.015
  10. Ryu, J.H., Yang, J.H. and Yoh, J.J., "Novel utilization of the molecular band signal in metal oxides: understanding the aging process of pyrotechnic substances by using laser induced plasma emissions," Optical Materials Express, Vol. 9, No. 2, pp. 410-422, 2019. https://doi.org/10.1364/OME.9.000410
  11. Thomas, J.C., Sammet, T.E., Dillier, C.A.M., Demko, A.R., Rodriguez, F.A. and Petersen, E.L., "Aging effects on the burning rates of composite solid propellants with nanoadditives," Journal of Propulsion and Power, Vol. 35, No. 2, pp. 342-351, 2019. https://doi.org/10.2514/1.b37189
  12. Kadiresh, P. and Sridhar, B.T.N., "Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging," Journal of Thermal Analysis and Calorimetry, Vol. 100, No. 1, pp. 331-335, 2010. https://doi.org/10.1007/s10973-009-0569-3
  13. Hohmann, C., "Propellant for the NASA standard initiator. National Aeronautics and Space Administration," Lyndon B. Johnson Space Center, 2000.
  14. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C. and Sbirrazzuoli, N., "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data," Thermochimica Acta, Vol. 520, No. 1-2, pp. 1-19, 2011. https://doi.org/10.1016/j.tca.2011.03.034
  15. Friedman, H.L., "Kinetics of thermal degradation of char forming plastics from thermogravimetry. Application to a phenolic plastic," In Journal of Polymer Science Part C: Polymer Symposia, Vol. 6, No. 1, pp. 183-195, 1964. https://doi.org/10.1002/polc.5070060121
  16. Jian, G., Chowdhury, S., Sullivan, K. and Zachariah, M.R., "Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?," Combustion and Flame, Vol. 160, No. 2, pp. 432-437, 2013. https://doi.org/10.1016/j.combustflame.2012.09.009
  17. Ryu, J.H., Yang, J.H. and Yoh, J.J., "A non-calorimetric approach for investigating the moisture-induced ageing of a pyrotechnic delay material using spectroscopies," Scientific Reports, Vol. 9, No. 1, pp. 1-10, 2019. https://doi.org/10.1038/s41598-018-37186-2
  18. Lu, K.T. and Yang, C.C., "Thermal Analysis Studies on the Slow Propagation Tungsten Type Delay Composition System," Propellants, Explosives, Pyrotechnics, Vol. 33, No. 5, pp. 403-410, 2008. https://doi.org/10.1002/prep.200700287
  19. Bhosle, V., Baburaj, E.G., Miranova, M. and Salama, K., "Dehydrogenation of TiH2," Materials Science and Engineering: A, Vol. 356, No. 1-2, pp. 190-199, 2003. https://doi.org/10.1016/S0921-5093(03)00117-5
  20. Chen, K.S., "A simplified model of TiH1. 65/KClO4 pyrotechnic ignition," No. SAND2009-1217, Sandia National Laboratories, 2009.
  21. Massis, T.M., "The processing, properties and use of the pyrotechnic mixture-titanium subhydride/potassium perchlorate," In 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, U.S.A., AIAA-96-3019, Jul. 1996.
  22. Park, K.B., Choi, J., Na, T.W., Kang, J.W., Park, K. and Park, H.K., "Oxygen Reduction Behavior of HDH TiH2 Powder during Dehydrogenation Reaction," Metals, Vol. 9, No. 11, pp. 1154, 2019. https://doi.org/10.3390/met9111154
  23. Conley, P.L., "Space vehicle mechanisms: elements of successful design," John Wiley & Sons.New York: Wiley Subscription Services, Inc., A Wiley Company, 1964.