DOI QR코드

DOI QR Code

Two New Species in the Family Cunninghamellaceae from China

  • Zhao, Heng (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Zhu, Jing (Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences) ;
  • Zong, Tong-Kai (College of Biodiversity Conservation, Southwest Forestry University) ;
  • Liu, Xiao-Ling (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Ren, Li-Ying (College of Plant Protection, Jilin Agricultural University) ;
  • Lin, Qing (Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences) ;
  • Qiao, Min (State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University) ;
  • Nie, Yong (School of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Zhang, Zhi-Dong (Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences) ;
  • Liu, Xiao-Yong (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences)
  • 투고 : 2020.12.07
  • 심사 : 2021.03.14
  • 발행 : 2021.04.30

초록

The species within the family Cunninghamellaceae are widely distributed and produce important metabolites. Morphological studies along with a molecular phylogeny based on the internal transcribed spacer (ITS) and large subunit (LSU) of ribosomal DNA revealed two new species in this family from soils in China, that is, Absidia ovalispora sp. nov. and Cunninghamella globospora sp. nov. The former is phylogenetically closely related to Absidia koreana, but morphologically differs in sporangiospores, sporangia, sporangiophores, columellae, collars, and rhizoids. The latter is phylogenetically closely related to Cunninghamella intermedia, but morphologically differs in sporangiola and colonies. They were described and illustrated.

키워드

과제정보

Ze-Fen Yu (Yunnan University) is acknowledged for helping with specimen collection.

참고문헌

  1. Naumov NA. Opredelitel Mukorovykh (Mucorales). Ed. 2. Moscow (Russia); Leningrad (Russia): Bot. Inst. Acad. Sci. U.S.S.R; 1935. p. 136.
  2. Benjamin RK. The merosporangiferous Mucorales. Aliso. 1959;4(2):321-433. https://doi.org/10.5642/aliso.19590402.05
  3. Hesseltine CW. Genera of Mucorales with notes on their synonymy. Mycologia. 1955;47(3):344-363. https://doi.org/10.2307/3755457
  4. Pidoplichko NM, Mil'ko AA. Atlas mukoral'vykh gribov Atlas of the Mucorales. Izdat. Kiev (Ukraine): 'Naukova Dumka'; 1971. p. 115.
  5. Hesseltine CW, Ellis JJ. Mucorales. In Ainsworth GC, Sparrow FK, Sussman AS, editors. The fungi. Vol. 4b. New York (NY): Academic Press; 1955. p. 187-217.
  6. Mil'ko AA. Opredeltiel' mukoral'nykh gribov Key to the identification of Mucorales. Kiev (Ukraine): 'Naukova Dumka'; 1974. p. 303.
  7. Benny GL, Benjamin RK. Observations on Thamnidiaceae (Mucorales). II. Chaetocladium, Cokeromyces, Mycotypha, and Phascolomyces. Aliso. 1976;8(4):391-424. https://doi.org/10.5642/aliso.19760804.05
  8. Cannon PF, Kirk PM. Fungal families of the world. Wallingford (UK): CAB International; 2007. p. 456.
  9. Benny GL. Zygomycetes [Internet]. 2020 [cited Accessed 2020 November 20]. Retrieved from: www.zygomycetes.org
  10. Eucker J, Sezer O, Graf B, et al. Mucormycoses. Mycoses. 2001;44(7-8):253-260. https://doi.org/10.1111/j.1439-0507.2001.00656.x
  11. Ghasemi S, Heidary M, Habibi Z. The 11α-hydroxylation of medroxyprogesterone acetate by Absidia griseolla var. igachii and Acremonium chrysogenum. Steroids. 2019;149:108427. https://doi.org/10.1016/j.steroids.2019.108427
  12. Chen J, Fan F, Qu G, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020;57:31-42. https://doi.org/10.1016/j.ymben.2019.10.006
  13. van Tieghem P. Troisieme memoire sur les Mucorinees. Annales Des Siences Naturelles, Botanique, Ser VI. 1876;4:312-398.
  14. Zhang TY, Yu Y, Zhu H, et al. Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol. 2018;68(8):2468-2472. https://doi.org/10.1099/ijsem.0.002857
  15. Ling Y. Etude biologique des phenomenes de la sexualite chez les Mucorinees. Appendice Revue Generale de Botanique. 1930;42:722-752.
  16. Hesseltine CW, Ellis JJ. Notes on Mucorales, especially Absidia. Mycologia. 1961;53(4):406-426. https://doi.org/10.2307/3756584
  17. Hoffmann K, Discher S, Voigt K. Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycol Res. 2007;111(10):1169-1183. https://doi.org/10.1016/j.mycres.2007.07.002
  18. Walther G, Pawlowska J, Alastruey-Izquierdo A, et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia. 2013;30:11-47. https://doi.org/10.3767/003158513X665070
  19. Fakas S, Papanikolaou S, Galiotou-Panayotou M, et al. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol. 2008;105(4):1062-1070. https://doi.org/10.1111/j.1365-2672.2008.03839.x
  20. Alakhras R, Bellou S, Fotaki G, et al. Fatty acid lithium salts from Cunninghamella echinulata have cytotoxic and genotoxic effects on HL-60 human leukemia cells. Eng Life Sci. 2015;15(2):243-253. https://doi.org/10.1002/elsc.201400208
  21. Zhao H, Lv ML, Liu Z, et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. BioEnergy Res. 2020;
  22. Zheng RY, Chen GQ. A monograph of Cunninghamella. Mycotaxon. 2001;80:1-75.
  23. Zhang ZY, Zhao YX, Shen X, et al. Molecular phylogeny and morphology of Cunninghamella guizhouensis sp. nov. (Cunninghamellaceae, Mucorales), from soil in Guizhou, China. Phytotaxa. 2020;455(1):31-39. https://doi.org/10.11646/phytotaxa.455.1.4
  24. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109(16):6241-6246. https://doi.org/10.1073/pnas.1117018109
  25. Su YC, Huang H, Liu XY, et al. Systematic relationship of several controversial Cunninghamella taxa inferred from sequence comparisons of ITS2 of rDNA. Mycol Res. 1999;103(7):805-810. https://doi.org/10.1017/S0953756298007667
  26. Liu XY, Huang H, Zheng RY. Relationships within Cunninghamella based on sequence analysis of ITS rDNA. Mycotaxon. 2001;80:77-95.
  27. Guo J, Wang H, Liu D, et al. Isolation of Cunninghamella bigelovii sp. nov. CGMCC 8094 as a new endophytic oleaginous fungus from Salicornia bigelovii. Mycol Prog. 2015;14(3):11. https://doi.org/10.1007/s11557-015-1029-z
  28. Du P, Wu F, Tian XM. Three new species of Junghuhnia (Polyporales, Basidiomycota) from China. MycoKeys. 2020;72:1-16. https://doi.org/10.3897/mycokeys.72.51872
  29. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gefand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-322.
  30. Wang CG, Liu SL, Wu F. Two new species of Perenniporia (Polyporales, Basidiomycota). MycoKeys. 2020;69:53-69. https://doi.org/10.3897/mycokeys.69.51652
  31. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276-3278. https://doi.org/10.1093/bioinformatics/btu531
  32. Nie Y, Cai Y, Gao Y, et al. Three new species of Conidiobolus sensu stricto from plant debris in eastern China. MycoKeys. 2020;73:133-149. https://doi.org/10.3897/mycokeys.73.56905
  33. Nie Y, Yu DS, Wang CF, et al. A taxonomic revision of the genus Conidiobolus (Ancylistaceae, Entomophthorales): four clades including three new genera. MycoKeys. 2020;66:55-81. https://doi.org/10.3897/mycokeys.66.46575
  34. Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sunderland (UK): Sinauer Associates; 2002.
  35. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  36. Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-542. https://doi.org/10.1093/sysbio/sys029
  37. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696-704. https://doi.org/10.1080/10635150390235520
  38. Darriba D, Taboada GL, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
  39. Rambaut A. FigTree version 1.4.4 [Internet]. 2012. Retrieved from: http://tree.bio.ed.ac.uk/software/figtree/
  40. Ariyawansa HA, Hyde KD, Jayasiri SC, et al. Fungal diversity notes 111-252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75(1):27-274. https://doi.org/10.1007/s13225-015-0346-5
  41. Deshpande KB, Mantri JM. A new species of Cunninghamella from India. Mycopathologia et Mycologia Applicata. 1966;28(4):342-344. https://doi.org/10.1007/BF02145109
  42. Richardson M. The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infec. 2009;15:2-9. https://doi.org/10.1111/j.1469-0691.2009.02972.x
  43. Hyde KD, Hongsanan S, Jeewon R, et al. Fungal diversity notes 367-490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80(1):1-270. https://doi.org/10.1007/s13225-016-0373-x

피인용 문헌

  1. Taxonomy and Phylogeny of Four New Species in Absidia (Cunninghamellaceae, Mucorales) From China vol.12, 2021, https://doi.org/10.3389/fmicb.2021.677836
  2. The Gene Rearrangement, Loss, Transfer, and Deep Intronic Variation in Mitochondrial Genomes of Conidiobolus vol.12, 2021, https://doi.org/10.3389/fmicb.2021.765733