DOI QR코드

DOI QR Code

Artificial Cultivation Characteristics and Bioactive Effects of Novel Tropicoporus linteus (Syn. Phellinus linteus) Strains HN00K9 and HN6036 in Korea

  • Min, Gyeong-Jin (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Kang, Hee-Wan (Department of Horticultural Biotechnology, Division of Biotechnology, Hankyong National University)
  • 투고 : 2020.04.02
  • 심사 : 2021.01.02
  • 발행 : 2021.04.30

Abstract

Phellinus strains were collected from different areas in Korea. Of them, the fast mycelial growing strains were artificially cultivated on the oak logs to produce fruiting body. The varieties, Phellinus linteus ASI26099 (Korea Sanghwang) and P. baumii PBJS (Jangsoo Sanghwang) were grown under the same conditions as controls. Their cultivating characteristics including mycelial colonization, pinhead formation, and fruiting body formation rate were investigated on the logs. Basidiocarps of Phellinus strains HN00K9, HN6036, and ASI26099 were concentrically zonate and shallowly sulcate, and dark chestnut showing typical characteristics of Tropicoporus linteus (synonyum: P. linteus, Inonotus linteus, polyporus linteus), which is distinguishably different to PBJS. HN00K9 showed the highest yield of fruiting body among the mushroom strains. The β-glucan content in fruiting bodies of HN00K9 was 20% higher than those of other strains. Bioactive effects of polysaccharide samples from fruiting bodies of Phellinus strains, HN00K9, HN6036, ASI26099, and PBJS were assessed on cell viability and cytokine (IL-6 and TNF-α) inhibition and finally on anticancer to different human cancer cells.

Keywords

Acknowledgement

This study was supported by high value added food technology development project [1545016114] of the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET).

References

  1. Sliva D. Medicinal mushroom Phellinus linteus as an alternative cancer therapy. Exp Ther Med. 2010;1:407-411. https://doi.org/10.3892/etm_00000063
  2. Wu SH, Dai YC, Hattori T, et al. Species clarification for the medicinally valuable 'sanghuang' mushroom. Botanical Stud. 2012;53:101-111.
  3. Ikekawa T, Nakanish M, Uehara N, et al. Antitumor action of some basidiomycetes, especially Phellinus linteus. Japanese J Cancer Res. 1968;59:155-157.
  4. Kim BC, Jeon WK, Hong HY, et al. The antiinflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J Ethnopharmacol. 2007;113:240-247. https://doi.org/10.1016/j.jep.2007.05.032
  5. Yang LY, Shen SC, Cheng KT, et al. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J Ethnopharmacol. 2014;156:61-72. https://doi.org/10.1016/j.jep.2014.07.054
  6. Kim HM, Han SB, Oh GT, et al. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Inter J Immunopharmacol. 1996;18:295-303. https://doi.org/10.1016/0192-0561(96)00028-8
  7. Suabjakyong P, Nishimura K, Toida T, et al. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7). Food Funct. 2015;6:2834-2844. https://doi.org/10.1039/C5FO00491H
  8. Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002;60:258-274. https://doi.org/10.1007/s00253-002-1076-7
  9. Lee IK, Han MS, Lee MS, et al. Styrylpyrones from the medicinal fungus Phellinus baumii and their antioxidant properties. Bioorg Med Chem Lett. 2010;20:5459-5461. https://doi.org/10.1016/j.bmcl.2010.07.093
  10. Lee Y, Lee W, Kim J, et al. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. Br J Pharmacol. 2008;154:852-863. https://doi.org/10.1038/bjp.2008.136
  11. Jung JY, Lee IK, Seok SJ, et al. Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus. J Appl Microbiol. 2008;104:1824-1832. https://doi.org/10.1111/j.1365-2672.2008.03737.x
  12. Hur JM, Yang CH, Han SH, et al. Antibacterial effect of Phellinus linteus against methicillin-resistant Staphylococcus aureus. Fitoterapia. 2004;75:603-605. https://doi.org/10.1016/j.fitote.2004.06.005
  13. Shirahata T, Ino C, Mizuno F, et al. γ-Ionylidenetype sesquiterpenoids possessing antimicrobial activity against Porphyromonas gingivalis from Phellinus linteus and their absolute structure determination. J Antibiot. 2017;70:695-698. https://doi.org/10.1038/ja.2017.35
  14. KIm JH, Kim YC, Park B. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors. Oncol Rep. 2016;35:1020-1026. https://doi.org/10.3892/or.2015.4440
  15. Konno S, Chu K, Feuer N, et al. Potent anticancer effects of bioactive mushroom extracts (Phellinus linteus) on a variety of human cancer cells. J Clin Med Res. 2015;7:76-82. https://doi.org/10.14740/jocmr1996w
  16. Lee WY, Hsu KF, Chiang TA, et al. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth. Nutr Cancer. 2015;67:275-284. https://doi.org/10.1080/01635581.2015.989374
  17. Feng H, Zhang S, Wan JMF, et al. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydr Polym. 2018;200:144-153. https://doi.org/10.1016/j.carbpol.2018.07.086
  18. Kim HM, Kang JS, Kim JY, et al. Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse. Int Immunopharmacol. 2010;10:72-78. https://doi.org/10.1016/j.intimp.2009.09.024
  19. Huang SC, Wang PW, Kuo PC, et al. Hepatoprotective principles and other chemical constituents from the mycelium of Phellinus linteus. Molecules. 2018;23:1705. https://doi.org/10.3390/molecules23071705
  20. Choi DJ, Cho S, Seo JY, et al. Neuroprotective effects of the Phellinus linteus ethyl acetate extract against H2O2-induced apoptotic cell death of SK-N-MC cells. Nutr Res. 2016;36:31-43. https://doi.org/10.1016/j.nutres.2015.11.005
  21. Lee IK, Jung JY, Kim YH, et al. Phellinins A1 and A2, new styrylpyrones from the culture broth of Phellinus sp. KACC93057P: II. Physicochemical properties and structure elucidation. J Antibiot. 2009;62:635-637. https://doi.org/10.1038/ja.2009.83
  22. Tian XM, Yu HY, Zhou LW, et al. Phylogeny and taxonomy of the Inonotus linteus complex. Fungal Div. 2013;58:159-169. https://doi.org/10.1007/s13225-012-0202-9
  23. Jeong WJ, Lim YW, Lee JS, et al. Phylogeny of Phellinus and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. J Microbiol Biotechnol. 2005;15:1028.
  24. Zhou LW, Vlasak J, Decock C, et al. Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Div. 2016;77:335-347. https://doi.org/10.1007/s13225-015-0335-8
  25. Hong IP, Jung IY, Nam SH, et al. Cultural characteristics of a medicinal mushroom, Phellinus linteus. Mycobiology. 2002;30:208-212. https://doi.org/10.4489/MYCO.2002.30.4.208
  26. Hur H. Cultural characteristics and log-mediated cultivation of the medicinal mushroom, Phellinus linteus. Mycobiology. 2008;36:81-87. https://doi.org/10.4489/MYCO.2008.36.2.081
  27. Min GJ, Kwak AM, Seok SJ, et al. Morphological and cultural characteristics of a novel Phellinus linteus KACC93057P. J Mushrooms. 2016;14:75-80. https://doi.org/10.14480/JM.2016.14.3.75
  28. Chen W, Tan H, Liu Q, et al. A review: the bioactivities and pharmacological applications of Phellinus linteus. Molecules. 2019;24:1888. https://doi.org/10.3390/molecules24101888
  29. Han SB, Lee CW, Jeon YJ, et al. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology. 1999;41:157-164. https://doi.org/10.1016/S0162-3109(98)00063-0
  30. Williams DL. Overview of (1->3)-beta-D-glucan immunobiology. Mediators Inflamm. 1997;6:247-250. https://doi.org/10.1080/09629359791550
  31. Ayeka PA. Potential of mushroom compounds as immunomodulators in cancer immunotherapy: a review. Evid Based Complement Altern Med. 2018;2018:7271509. https://doi.org/10.1155/2018/7271509
  32. Song KS, Cho SM, Lee J, et al. B-lymphocyte-stimulating polysaccharide from mushroom Phellinus linteus. Chem Pharm Bull (Tokyo). 1995;43:2105-2108. https://doi.org/10.1248/cpb.43.2105
  33. Zhu T, Kim SH, Chen CY. A medicinal mushroom: Phellinus linteus. Curr Med Chem. 2008;15:1330-1335. https://doi.org/10.2174/092986708784534929
  34. Zhu T, Guo J, Collins L, et al. Phellinus linteus activates different pathways to induce apoptosis in prostate cancer cells. Br J Cancer. 2007;96:583-590. https://doi.org/10.1038/sj.bjc.6603595
  35. Jeong EU, Min KJ, Yun BS, et al. Chemical identification and antioxidant activity of phenoliccompounds extracted from the fruiting body of Hankyong Sanghwang, Phellinus linteus KACC 93057P. J Mushrooms. 2018;16:1-7.
  36. Min GJ, Yun BS, Kang HW. Comparison of antioxidant activities and polyphenolic compounds of extracts from artificially cultivated Sanghwang mushroom species, Phellinus linteus and P. baumii. J Mushrooms. 2020;18:29-36.