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Abstract
A regression with multi-dimensional responses is quite common nowadays in the so-called big data era. In

such regression, to relieve the curse of dimension due to high-dimension of responses, the dimension reduction
of predictors is essential in analysis. Sufficient dimension reduction provides effective tools for the reduction, but
there are few sufficient dimension reduction methodologies for multivariate regression. To fill this gap, we newly
propose two fused slice-based inverse regression methods. The proposed approaches are robust to the numbers
of clusters or slices and improve the estimation results over existing methods by fusing many kernel matrices.
Numerical studies are presented and are compared with existing methods. Real data analysis confirms practical
usefulness of the proposed methods.

Keywords: central subspace, fused sliced inverse regression, multivariate regression, pooled
approach, sufficient dimension reduction

1. Introduction

With the recent advances in computing technology, it has become possible to perform calculations and
modeling on vast amounts of data that were difficult before. With high-dimensional data modeling,
the so-called curse of dimension is often faced, and it is one of main issues in such data analysis.

In regression of Y ∈ Ru|X ∈ Rp, sufficient dimension reduction (SDR) seeks to replace the original
p-dimensional predictors X by its lower-dimensional predictor ηTX without loss of information on
the conditional distribution of Y ∈ Ru|X ∈ Rp, where u ≥ 1, p ≥ 2 and η ∈ Rp×d with d ≤ p. It is
equivalently stated as the following independent statement:

Y X|ηTX, (1.1)

where stands for statistical independence.
For further usage, for p × q matrix M, we define a notation S(M) as a subspace spanned by the

columns of M. Multiple η to satisfy (1.1) can exist, and then it is natural to choose the minimal
one among them. The subspace spanned by the minimal one is called the central subspace SY|X.
Throughout the rest of the paper, η and d will stand for an orthonormal basis matrix and the struc-
tural dimension of SY|X. The d-dimensional linearly transformed predictor ηTX is called sufficient
predictors. For further insights about SDR, readers are recommended to read Yoo (2016a, b).

When the dimension of Y, u is bigger than or equal to 2, the regression is called multivariate
regression. The demand of multivariate regression has rapidly grown according to advent of big
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data era. Repeated measures, longitudinal data, or curve or time series data often appear in big
data, and the analysis of such data is difficult due to high-dimensionality of predictors. For exam-
ple, the total number of regression coefficients to estimate in a classical multivariate regression of
Y = (Y1, . . . ,Yu)T|X = (X1, . . . , Xp)T is equal to p × u and multiply increase with adding more re-
sponses. Therefore, to avoid this complexity in the analysis, a proper dimension reduction of X is
important, and SDR provides a good solution to the problem. So far, various SDR methodologies
have been developed to estimate SY|X in multivariate regression. Various SDR methodologies for
multivariate regression have been proposed (Lee et al., 2019; Setodji and Cook, 2004; Yin and Bura,
2006; Yoo, 2008, 2009; Yoo and Cook, 2007; Yoo et al., 2010). In Setodji and Cook (2004) and Yoo
et al. (2010), an inverse regression approach, called K-means inverse regression (KIR) and K-means
average variance estimation, is adopted, while the other methods combine the information from the
coordinate regression of Yk |X, k = 1, . . . , u, where Yk is the kth coordinate of Y = (Y1, . . . ,Yu)T.

Here, our interest is given in KIR, which is one of the widely used SDR method in multivariate
regression. The key-step in KIR is to do K-means clustering Y. However, different numbers of the
clusters provide different outcome by KIR, so it often causes a question regarding how many clusters
must be used in KIR. So far, there is no thumb rule for it. To overcome similar issue in sliced inverse
regression (SIR) (Li, 1991), Cook and Zhang (2014) propose a fused approach to combine all results
from various numbers of slices, and they show that it provides robust estimation of SY|X to the number
of slices and improves the estimation accuracy ofSY|X. If this fusing idea is employed in KIR, we have
potential advantages to have robust results to the number of clusters and to improve the estimation of
SY|X like SIR. This is the main purpose of the paper. For this, we propose two fused approaches. The
first one is to fuse the results based on hierarchical clustering algorithm recommended by Yoo et al.
(2020), not K-means clustering algorithm in KIR. Another one is to fuse all results by the fused SIR
application on the coordinate regression of Yk |X, k = 1, . . . , u.

The organization of the paper is as follows. Sliced inverse regression and hierarchical inverse
regression are reviewed in Section 2. Section 3 is devoted to proposing pooled sliced inverse regres-
sion for multivariate regression and two fused approaches for multivariate regression. In Section 4,
numerical studies and real data examples are presented. We summarize our work in Section 5.

2. Literature review: sliced and hierarchical inverse regressions

2.1. Sliced inverse regression

Understanding sliced inverse regression (SIR) (Li, 1991) is essential for methodological development,
because its main methodological development is based on SIR.

Letting Σ = cov(X), Li (1991) showed that Σ−1E(X|Y) ∈ SY|X, if E
(
X|ηTX

)
is linear in ηTX.

Defining that Z = Σ−1/2(X−X̄), the relation ofΣ−1E(X|Y) ∈ SY|X is equivalent to that ofΣ−1/2E(Z|Y) ∈
SY|X according to Yoo (2016b). In practice, E(Z|Y) is restored instead of E(X|Y). Therefore, non-
parametric estimation of E(Z|Y) is the primary interest in SIR. It can be done in a simple fashion by
categorizing Y called slicing. Once the slicing is done, E(X|Y) can be easily replaced with sample
means of X within each category. The estimation method of SY|X via Σ−1/2E(Z|Y) is called sliced
inverse regression. Its sample algorithm is as follows.

Step 1. Slice Y to have h categories. Let H j stand for the jth slice for j = 1, 2, . . . h.

Step 2. Standardize the predictors X such that Ẑi = Σ̂
−1/2

(Xi − X̄), i = 1, 2, . . . , n, where Σ̂ is usual
moment estimator of Σ and Σ̂

−1/2
Σ̂
−1/2

= Σ̂
−1

.
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Step 3. Calculate the sample means of ¯̂Zk = (1/nk)
∑

i∈Hk
Ẑi within each slice for k = 1, . . . , h, where

nk stands for the size of the kth slice. Then, form a kernel matrix K̂SIR:

K̂SIR =

(n1

n
¯̂Z1,

n2

n
¯̂Z2, . . . ,

nh

n
¯̂Zh

)
.

Step 4. Do the spectral decomposition of M̂SIR = K̂SIRK̂T
SIR such that M̂SIR =

∑p
i=1 λ̂iγ̂iγ̂

T
i , where

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0.

Step 5. Let Γ̂d = (γ̂1, . . . , γ̂d) be the eigenvectors corresponding to the first d largest eigenvalues of
M̂SIR. Defining that η̂ = Σ̂

−1/2
Γ̂d, S(η̂) is the estimate of SY|X.

2.2. Hierarchical inverse regression

In the SIR algorithm, if following the slicing scheme for multivariate responses, it often faces the
curse of dimensionality. For example, if there are five dimensional responses, the least number of
slices should be 32(=25). If the number of observations in data is 50, some slices must have only one
observation. Accordingly, this leads unreliable dimension reduction results. It is noted that grouping
the observations based on their similarity of the response is essential in the slicing scheme. When
Y is multi-dimensional, grouping by similarity can be done via clustering algorithms. Setodji and
Cook (2004) and Yoo et al. (2010) successfully replace the usual slicing scheme with the K-means
clustering algorithm for SIR, called K-means inverse regression (KIR), and sliced average variance
estimation, respectively. In a perspective of fusing, the K-means algorithm is not be effective ac-
cording to Yoo et al. (2020). The benefit of fusing mainly comes from nestness and reproducibility
of slicing, but the K-means algorithm does not have the two properties. For details on nestness and
reproducibility, readers refer Yoo et al. (2020).

Instead, hierarchical clustering algorithms have nestness and reproducibility, and Yoo et al. (2020)
showed that the application of SIR via hierarchical clustering algorithm have advantage over the K-
means clustering algorithm. So, following the guidance of Yoo et al. (2020), Ward’s hierarchical
clustering algorithm will replace the usual slicing scheme.

For multivariate regression, once the responses are clustered, it replaces Step 1 in the SIR algo-
rithm and follows the other steps in the same fashion. We call this approach hierarchical inverse
regression (HIR).

3. Pooled sliced inverse regression and fused multivariate inverse regression

3.1. Pooled sliced inverse regression

Although clustering methods are effective and efficient alternatives to the usual slicing scheme for
multivariate responses, it is inevitable for some clusters to have small sample sizes.

To overcome this issue, the following relationship between the central subspaces of Y|X and the
coordinate regression of Yk |X should be noted:

⊕u
k=1SYk |X ⊆ SY|X, (3.1)

where SYk |X is the central subspace of Yk |X and ⊕ denotes the direct sum among subspaces (S1 ⊕ S2
= v1 + v2; v1 ∈ S1, v2 ∈ S2).

This relation was firstly observed and utilized by Yoo et al. (2010), which proposed pooled sliced
average variance estimation. It directly implies that combining all information on the central subspace
of the coordinate regressions contains useful information on SY|X.
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Following this pooling idea, we newly introduce the following pooled sliced inverse regression
(pSIR). Let M(k)

SIR be the population kernel matrices of SIR for Yk |X. Define MpSIR = (1/r)
∑r

k=1 M(k)
SIR.

The columns of the first d largest eigenvectors of MpSIR pre-multiplied by Σ−1/2 span SY|X. Its sample
algorithm is as follows.

Step 1. Construct M̂(k)
SIR for a coordinate regression of Yk |X, k = 1, . . . , u, from the usual SIR applica-

tion.

Step 2. Compute M̂pSIR = (1/r)
∑r

k=1 M̂(k)
SIR.

Step 3. Do the spectral decomposition of M̂pSIR such that M̂pSIR =
∑p

i=1 λ̂iγ̂iγ̂
T
i , where λ̂1 ≥ λ̂2 ≥

· · · ≥ λ̂p ≥ 0.

Step 4. Let Γ̂d = (γ̂1, . . . , γ̂d) be the eigenvectors corresponding to the first d largest eigenvalues of
M̂pool. Defining that η̂ = Σ̂

−1/2
Γ̂d, S(η̂) is the estimate of SY|X.

3.2. Fused hierarchical inverse regression

Let M{g}
HIR indicate the kernel matrix of HIR with g clusters constructed by Ward’s hierarchical clus-

tering algorithm. Then, the following relation is easily observed:

Σ−
1
2S

(
M{g}

HIR

)
⊆ SY|X, g = 2, . . . , h.

The case of g = 1 is obviously ruled out, because it yields null matrix. This above relation directly
indicates that

⊕h
g=2Σ

− 1
2S

(
M{g}

HIR

)
= Σ−

1
2 ⊕h

g=2 S
(
M{g}

HIR

)
⊆ SY|X.

Based on this, we newly define M{g}
FHIR as

M{g}
FHIR =

(
M{2}

HIR,M
{3}
HIR, . . . ,M

{g}
HIR

)
, g = 3, . . . , h. (3.2)

In (3.2), the case of M{2}
FHIR is out of consideration, because M{2}

FHIR = M{2}
HIR. Theoretically, we can see

that

Σ−
1
2S

(
M{3}

FHIR

)
⊆ Σ−

1
2S

(
M{4}

FHIR

)
⊆ · · · ⊆ Σ−

1
2S

(
M{h}

FHIR

)
⊆ SY|X.

Therefore, M{g}
FHIR becomes a new kernel matrix to estimate SY|X. Further, for the exhaustive estima-

tion of SY|X, a condition that Σ−1/2S
(
M{g}

FHIR

)
= SY|X is forced, which is normally assumed in SDR

literature. The estimation of SY|X through M{g}
FHIR will be called fused hierarchical inverse regression

(FHIR).
The sample version M̂{g}

FHIR is computed by replacing the population quantities with usual sample
HIR kernel matrices. Fusing all information of the HIR application upto g clusters would cause
potential advantages in more robust estimation results to choices of h and more accurate estimation of
SY|X than KIR.
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3.3. Fused pooled sliced inverse regression

Let M{g}
pSIR indicate the kernel matrix constructed by pSIR with g slices for all coordinate regressions

of Yk |X. Like FHIR, the following relation is easily observed:

Σ−
/
2S

(
M{g}

pSIR

)
⊆ SY|X, g = 2, . . . , h.

Accordingly like (3.2), we define that

M{g}
FpSIR =

(
M{2}

pSIR,M
{3}
pSIR, . . . ,M

{g}
pSIR

)
, g = 3, · · · , h, (3.3)

and the following relation holds for the non-decreasing sequences of M{g}
FpSIR, g = 3, . . . , h:

Σ−
1
2S

(
M{3}

FpSIR

)
⊆ Σ−

1
2S

(
M{4}

FpSIR

)
⊆ · · · ⊆ Σ−

1
2S

(
M{h}

FpSIR

)
⊆ SY|X.

By assuming that Σ−1/2S
(
M{g}

FpSIR

)
= SY|X for the exhaustive estimation of SY|X, the quantity M{g}

FpSIR
becomes another kernel matrix fully informative to SY|X for multivariate regression. We call this SDR
approach fused pooled sliced inverse regression (FpSIR).

The sample version M̂{g}
FpSIR is constructed by computing M̂{g}

pSIR. Any choice of g in M̂{g}
pSIR will

provide the same asymptotic results, but their non-asymptotic behaviors can be easily affected by
the choice of g. However, by fusing all the pSIR application results upto g slices for all coordinate
regressions, more robust and accurate estimation of SY|X is expected than KIR.

3.4. Remarks on FpSIR and FHIR

For multivariate regression, one can use KIR, FpSIR and FHIR. The method FpSIR is recommended
as default among the three, because FpSIR provides quite good estimation performances in various
numerical studies, which are given in the next section. The two methods of KIR and FHIR require
clustering application, so it cannot be implemented for some data. Also, it is known that outliers
often affect clustering results, which may induce undesirable clustering results. Then, KIR and FHIR
possibly produce poor estimation of SY|X. So, one fit FpSIR first, and see the results. If the dimension
reduction results are not satisfactory, then it should be compared with those of FHIR and KIR.

4. Numerical studies and data analysis

4.1. Numerical studies

For all numerical studies, the sample sizes were 100, and each simulation model was iterated 1,000
times. To measure how the three methods of KIR, FHIR and FpSIR estimate SY|X well, absolute value
|r| of the square-root of r2 from a regression of ηT

i X on η̂TX, i = 1, . . . , d, was computed, where η̂
stands for the sample estimate of η. Three to ten numbers of clusters or slices were considered for the
three methods of KIR, FHIR and FpSIR.

The numerical studies are summarized by side-by-side boxplots of |r| for 3, 6 and 9 clusters or
slices (not all reported) along with a plot of lining mean of |r|s against the number of slices, h =

3, 4, . . . , 10.
We considered the following two models, which were investigated in Setodji and Cook (2004) for

KIR. In the models, all predictors Xi and random errors εi were independently generated from N(0, 1).

• Model 1 Each coordinate regression of Y = (Y1, . . . ,Y4)T|X = (X1, . . . , X4)T is as follows.
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Figure 1: Model 1 with homogeneous variance.

Y1 = c11TX + c2 exp
(
c31TX

)
ε1;

Y2 = c11TX + c2 exp
(
c3

∣∣∣2 − 31TX
∣∣∣) ε2;

Y3 = c11TX + c2 exp
(
2c31TX

)
ε3;

Y4 = c11TX + c2 exp
(
c3

∣∣∣1 − 1TX
∣∣∣) ε4, where 1 is a vector all of which elements consist of 1.

• Model 2 Each coordinate regression of Y = (Y1,Y2)T|X = (X1, . . . , X10)T is as follows.

Y1 = X1(X1 + X2 + 1) + σε1,

Y2 =
X1

0.5 + (X2 + 1.5)2 + σε2.

All coordinate regressions in Model 1 have the common linear conditional mean of c11TX. Since
SY|X is spanned by the column vector 1, the structural dimension is equal to one. Depending on
the choice of the value of c3, the regression has heteroscedasticity. Two cases of (1, 1, 0) and (0.1,
1, 0.1) for (c1, c2, c3) were considered. In the first case, the model is homoscedastic, while it is
heteroscedastic for the second case. Through Model 1, it can be investigated how heteroscedasticity
impacts the estimation of SY|X for the three methods.

Model 2 was designed to compare the estimation performances of the three methods for non-
linear conditional means. Since the central subspace of Model 2 is spanned by the columns of
(1, 0, 0, . . . , 0)T and (0, 1, 0, . . . , 0)T, which correspond to X1 and X2, respectively, its structural di-
mension is equal to two. Further, the values of σ were set to 0.5 and 1.
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Figure 2: Model 1 with heterogeneous variance.

Numerical studies for Models 1 and 2 are summarized in Figures 1–6. For Model 1 with homo-
geneous variance, there is no notable difference among all three methods of KIR, FHIR and FpSIR,
which yield very reliable estimation results. This is partially because Model 1 is just linear regres-
sion. However, according to Figure 2, the proposed FpSIR shows the best and most robust estimation
results to the numbers of clusters or slices among the three. Again, KIR and FHIR provide similar
estimation performances, although KIR is the worst with 3 clusters. The existence of heteroscedasticy
in Model 1 can bring outliers in responses, which affect the clustering results as discussed in Section
3.3. This possibly yield undesirable clustering results of the response variables, and it induces poor
estimation results of SY|X. Poor estimation of performances of KIR and FHIR in Model 1 can be
partially explained by this aspect. With larger numbers of slices, FpSIR still provide good estimation
of SY|X under heteroscedasticity.

For Model 2, Figures 3 and 5 show that the first sufficient predictor of X1 are well-estimated by
all the three methods for σ = 0.5 and 1. However, for the second sufficient predictor X2, KIR yields
very sensitive results for small numbers of clusters, while HIR is also quite robust to the numbers of
clusters and FpSIR is very robust to the numbers of slices. The estimation performances of the three
methods is negatively impacted by larger variability of noise ε. So, it can be concluded that HIR and
FpSIR estimate SY|X relatively well.

This numerical studies confirm that two proposed fused methods, especially FpSIR, outperform
the existing KIR in the estimation of SY|X, so we can expect potential advantages of FHIR and FpSIR
over KIR for the dimension reduction of predictors in multivariate regression.
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Figure 3: Model 2 with σ = 0.5, the first sufficient predictor of X1.
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Figure 4: Model 2 with σ = 0.5, the second sufficient predictor of X2.
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Figure 5: Model2 with σ = 1, the first sufficient predictor of X1.
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Figure 6: Model 2 with σ = 1, the second sufficient predictor of X2.
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Table 1: Dimension tests by the application of KIR, FHIR and FpSIR with 3, 6 and 9 clusters or slices: KIR#,
KIR with # clusters; FHIR#, FHIR with # clusters; FpSIR#, FpSIR with # slices

KIR3 KIR6 KIR9 FHIR3 FHIR6 FHIR9 FpSIR3 FpSIR6 FpSIR9
H0 : d = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H0 : d = 1 0.006 0.154 0.078 0.001 0.005 0.0012 0.111 0.080 0.066
H0 : d = 2 NA 0.972 0.770 NA 0.704 0.429 0.189 0.673 0.741

4.2. Minneapolis school data

For the illustration purpose, we considered a multivariate regression analyzed in Yoo (2009). The
data is regarding the performance of students in n = 63 Minneapolis schools. In the data, there are
four dimensional responses Y of the percents of students in a school scoring above and below average
on standardized fourth and sixth grade reading comprehension tests. Among many variables the
following five ones were considered as predictors: the pupil teacher ratio, and the square roots of the
percentage of children receiving Aid to Families with Dependent Children, the percentage of children
not living with both biological parents, the percentage of adults in the school area who completed
high school, the percentage of persons in the area below the federal poverty level. The predictors
were transformed to satisfy the linearity condition. The square root-scale is necessary to induce the
condition required in SIR.

For this regression, KIR, FHIR and FpSIR were applied with 3, 6 and 9 clusters or slices. The
estimated first and second sufficient predictors are reported in Figures 7 and 8. As seen in Figure 7,
all first sufficient predictors are very close to each other regardless of the numbers of clusters or slices
and methods. However, there are some differences in the second sufficient predictors. According to
Figure 8, the second sufficient predictors from FpSIR with 3, 6 and 9 slices are not highly correlated.
This implies that the second one would be random rather than deterministic, and this induces that it
is not informative to SY|X according to Yoo (2018). So, the first sufficient predictor should be enough
for the regression. On the other hand, in Figure 8, it is observed that the second sufficient predictors
from KIR and FHIR with 3, 6 and 9 clusters are highly correlated to each other, so we expect that
the structural dimension determination for KIR and FHIR should be, at least, two following the same
rationale in Yoo (2018). To investigate this, a permutation dimension test (Yin and Bura, 2006; Yoo,
2016b) were conducted for FHIR and FpSIR, and weighted χ2 test for KIR (Setoji and Cook, 2004)
starting H0 : d = 0 with nominal level 5%. If H0 : d = 0 is not rejected, increment d by 1 and redo
the test. Then, the structural dimension d is determined as the hypothesized value in H0 that the first
non-rejection occurs. The p-values for the test from KIR, FHIR and FpSIR with 3, 6 and 9 clusters
or slices are summarized in Table 1. According to Table 1, as discussed, FHIR and FpSIR determine
that d̂ = 1 and d̂ = 2, respectively. However, KIR determines that d̂ > 1 with 3 clusters and d̂ = 1
with 6 and 9 clusters. This is partially because of sensitiveness of KIR to the number of clusters. To
decide d̂ = 1 or d̂ = 2, it is necessary for formal theoretical and numerical studies in the dimension
estimation of FHIR and FpSIR, but this will be left for further research. Because FpSIR yields the
best estimation results in most cases of numerical studies and Yoo (2009) suggests that d̂ = 1, we
tentatively decide that d̂ = 1. So, one can investigate to find an adequate model for the multivariate
regression with the first sufficient predictor, instead of the original five dimensional predictors.



Fused inverse regression with multi-dimensional responses 277

KIR3.1

−2 1 −2 1 −2 1 −2 1

−
2

1

−
2

1

KIR6.1

KIR9.1

−
1

2

−
2

1

FHIR3.1

FHIR6.1

−
2

1

−
2

1

FHIR9.1

FpSIR3.1

−
2

1

−
2

1

FpSIR6.1

−2 1 −1 2 −2 1 −2 1 −2 1

−
2

1

FpSIR9.1

Figure 7: Scatterplot matrix of the first sufficient predictors obtained from the application of KIR, FHIR and
FpSIR with 3, 6 and 9 clusters or slices: KIR#.1, KIR with # clusters; FHIR#.1, FHIR with # clusters; FpSIR#.1,

FpSIR with # slices.

5. Discussion

For multivariate regression, there are few sufficient dimension reduction methods, although multi-
dimensional responses become more popular nowadays in the so-called big data era. Existing inverse
regression methods are still persuasive in multivariate regression, but they are sensitive to the number
of clusters or slices. A fused approach recently developed by Cook and Zhang (2014) shows clear
advantage for robustness to the number of slices in slicing-based inverse regression methods. So, in
this paper, two fused inverse regression methods for multivariate regression are newly proposed, which
are called fused hierarchical inverse regression and fused pooled sliced inverse regression. Fused
hierarchical inverse regression accumulates all kernel matrices from hierarchical inverse regression
(Yoo et al., 2020) with various numbers of clusters. In fused hierarchical inverse regression, the
multi-dimensional responses are clustered via Ward’s hierarchical clustering algorithm. On the other
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Figure 8: Scatterplot matrix of the second sufficient predictors obtained from the application of KIR, FHIR and
FpSIR with 3, 6 and 9 clusters or slices: KIR#.2, KIR with # clusters; FHIR#.2, FHIR with # clusters; FpSIR#.2,

FpSIR with # slices.

hand, the fused pooled sliced inverse regression has two step procedure. First, fused sliced inverse
regression (Cook and Zhang, 2014) is implemented and fused kernel matrices are computed for each
coordinate regression. Secondly, collect all kernel matrices from all coordinate regression, and the
final fused kernel matrix is constructed. Different from fused hierarchical inverse regression, the
clustering algorithm is not used, because the dimension of response in each coordinate regression is
equal to one. So, in fused pooled sliced inverse regression, usual slicing scheme is applicable.

Numerical studies confirm that both proposed fused methods provide robustness to choice of clus-
ters or slices and improve the estimation of the central subspace over the existing K-means inverse
regression. A real data example shows their practical usefulness in multivariate regression analysis.

Theoretical asymptotics of sample kernel matrices for the dimension determination of fused hier-
archical inverse regression and fused pooled sliced inverse regression should be studied and derived.
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Since the two proposed fused methods have similar kernel matrices, each kernel matrix is not inde-
pendent. So, for theoretical development, dependency central limit theorem should be applied. This
direction of research is in progress.
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