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Abstract
In this paper, we introduce an extended form of the inverse power Lomax model via Marshall-Olkin approach.

We call it the Marshall-Olkin inverse power Lomax (MOIPL) distribution. The four- parameter MOIPL distribu-
tion is very flexible which contains some former and new models. Vital properties of the MOIPL distribution
are affirmed. Maximum likelihood estimators and approximate confidence intervals are considered under Type
I censored samples. Maximum likelihood estimates are evaluated according to simulation study. Bayesian
estimators as well as Bayesian credible intervals under symmetric loss function are obtained via Markov chain
Monte Carlo (MCMC) approach. Finally, the flexibility of the new model is analyzed by means of two real data
sets. It is found that the MOIPL model provides closer fits than some other models based on the selected criteria.

Keywords: Inverse power Lomax distribution, Marshall-Olkin method, maximum likelihood, Baye-
sian estimation, Type I censored sample

1. Introduction

Lomax distribution is a heavy-tailed distribution usually employed in business, economics, and actua-
rial modeling. Lomax distribution has been used in various fields (Harris, 1968; Atkinson and
Harrison, 1978; Holland et al., 2006; Hassan and Al-Ghamdi, 2009; Hassan et al., 2016). In the
literature, extended and generalized forms of Lomax distribution have been considered by several
authors. Examples include, Marshall–Olkin extended-Lomax distribution by Ghitany et al. (2007),
exponentiated Lomax distribution by Abdul-Moniem and Abdel-Hameed (2012), beta Lomax, Kum-
araswamy Lomax and McDonald Lomax by Lemonte and Cordeiro (2013), gamma-Lomax distribution
by Cordeiro et al. (2013), Weibull Lomax distribution by Tahir et al. (2015), Gumbel-Lomax
distribution by Tahir et al. (2016), power Lomax (PL) distribution by Rady et al. (2016), exponentiated
Lomax geometric distribution by Hassan and Abd-Allah (2017), PL Poisson distribution by Hassan
and Nassr (2018), exponentiated Weibull-Lomax distribution by Hassan and Abd-Allah (2018), inverse
exponentiated Lomax distribution by Hassan and Mohamed (2019), Weibull inverse Lomax distribution
by Hassan and Mohamed (2019), Type II Topp Leone power Lomax distribution by Al-Marzouk et
al. (2020), truncated power Lomax distribution by Hassan et al. (2020) and half logistic Lomax
distribution by Hassan et al. (2020) among others.

Recently, Hassan and Abd-Alla (2019) introduced the inverse PL (IPL) distribution which is a
member of the inverted family of distributions. The IPL is very flexible in analyzing situations with
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a realized non-monotonic failure rate. The IPL distribution with shape parameters α, β and scale
parameter θ has the following probability density function (pdf)

g(y;α, β, θ) = αβθβy−(α+1) (θ + y−α
)−β−1 ; y, α, β, θ > 0. (1.1)

The cumulative distribution function (cdf) related to (1.1) is defined by

G(y;α, β, θ) = θβ
(
θ + y−α

)−β
. (1.2)

On the other hand, Marshall and Olkin (1997) introduced a new family of survival functions which
is obtained by adding a new parameter δ > 0 to an existing distribution. The new parameter will
result in flexibility in the distribution. This family is called the Marshall-Olkin-G (MO-G) class. Let
G(y) = 1 −G(y) is the survival function of a random variable Y , the cdf and pdf of the MO-G family
are defined as follows:

FMO(y) =
G(y)[

1 − δ̄
(
G(y)

)] ,
and

fMO(y) =
δg(y)[

1 − δ̄
(
G(y)

)]2 ,

where, δ > 0 and δ̄ = 1 − δ is known as a tilt parameter. The relationship between the hazard rate
function (hrf) of the original distribution h(y) and hrf of MO distribution is

rMO(y; δ) =
h(y)[

1 − δ̄
(
G(y)

)] ,
which follows that rMO(y : δ)/h(y), is increasing in y for δ ≥ 1 and decreasing for 0 < δ 6 1.
In the sense that MO-G distribution gives more flexibility for modelling various types of real data
in practice. Based on the above MO transformation several researchers have considered various
extended distributions in the last few years. For instance, Marshall and Olkin (1997) developed the
MO exponential and MO Weibull distributions, Rao et al. (2009) proposed the MO extended Lomax
distribution, Krishna et al. (2013) proposed the MO Fréchet distribution, MO exponential Weibull
distribution has been discussed by Pogány et al. (2015), MO power Lomax distribution has been
introduced by Haq et al. (2020) and generalized MO inverse Lindley by Bantan et al. (2020) among
others.

In many life test problems, the experimenter may not always obtain total information on failure
times units for the sake of cost and time considerations. The observed data from life test experiments
are referred to censored data. Life tests terminated at a pre-determined time, say τ are known as Type
I censored (TIC) samples.

Two contributions motivated by the MO transformation and TIC samples are regarded. First,
we use the basic motivations of the MOIPL distribution in practice are (i) it follows by considering
a parallel system with Z independent components and supposes that a random variable Z has the
geometric distribution with the probability mass function P(Z = z) = δ−1(1 − δ−1)z−1, z = 1, 2, . . . and
δ > 1. Let T1,T2, . . . represent the lifetimes of each component and suppose that they have the IPL
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distribution defined in (1.1). Then a random variable Y = max(T1,T2, . . . ,Tz) represents the lifetime
of the system. Therefore, the random variable Y follows the MOIPL model, (ii) to obtain more
flexible pdf with right skewed, uni-modal, reversed J and symmetric shapes; (iii) It is interesting
to observe that its hrf can be increasing, decreasing, bathtub or upside-down, and (iv) to provide
significant improvement in data modeling. Second, we obtain the maximum likelihood (ML) and
Bayesian estimators of the population parameters in case of the TIC scheme. Further, approximate
confidence intervals (CIs) and Bayesian credible intervals (BCIs) are obtained. This paper is designed
as follows. Section 2 defines the MOIPL distribution and provides its sub-models. Main properties
of the MOIPL distribution are derived in Section 3. The ML estimators and CIs of the parameters as
well as numerical issues are obtained in Section 4. Bayesian estimators are developed in Section 5.
MCMC approach is employed in Section 6. The usefulness of the new model using two applications
is explored in Section 7. The article ends with concluding remarks.

2. Marshel–Olkin inverse power Lomax distribution

In this section, an extended form of the IPL model is introduced. The new distribution is developed
based on MO approach. The MOIPL distribution is formulated by inducing a tilt parameter in the IPL
distribution. We now give the notion of the MOIPL distribution.

Definition 1. A random variable Y is said to have MOIPL distribution if its pdf is of the form

f (y; υ) = αβδθβy−(α+1)(θ + y−α)−β−1
{
1 − δ̄

[
1 − θβ

(
θ + y−α

)−β]}−2
; y > 0, (2.1)

where, υ(α, β, θ, δ) is a set of parameters. The cdf of MOIPL distribution related to (2.1) is defined by

F(y; υ) = θβ(θ + y−α)−β
{
1 − δ̄

[
1 − θβ

(
θ + y−α

)−β]}−1
. (2.2)

A random variable Y has MOIPL distribution will be denoted by Y ∼MOIPL(α, β, θ, δ).

• For δ = 1, we obtain the IPL distribution.

• For α = 1, and θ = 1/φ, we obtain the MO inverse Pareto distribution (see M-Gharib et al., 2017).

• For δ = 1, and α = 1, we obtain inverse Lomax distribution.

• For δ = 1, and Y = 1/X, we obtain the PL distribution.

• For α = 1, and Y = 1/X, we obtain MO extended Lomax distribution.

• For δ = 1, α = 1, and Y = 1/X, we obtain Lomax distribution.

The survival function (sf) and hrf of MOIPL distribution are given, respectively, by

F(y; υ) = δ
[
1 − θβ

(
θ + y−α

)−β] {1 − δ̄ [1 − θβ (θ + y−α
)−β]}−1

,

and

h(y; υ) =
αβθβy−(α+1)(θ + y−α)−β−1[

1 − θβ (θ + y−α)−β
] {

1 − δ̄
[
1 − θβ (θ + y−α)−β

]} .
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Figure 1: Different pdf and hrf plots of MOIPL distribution for some parameter values.

Figure 1 illustrates the shapes of the pdf and hrf of MOIPL distribution for some choices of parameters.

We notice that the pdf of MOIPL distribution can take different forms, so it is quite flexible. Also,
it can be observed that the shapes of the hrf can be up-side down, bath-tub shaped at some selected
values of parameters. Accordingly, it can be used effectively to analyze lifetime data sets.

3. Structural properties

Here, some statistical properties of MOIPL distribution including, quantile function, sth moment and
sth negative moment, moments of the residual life, Rényi entropy and stochastic ordering are obtained.

3.1. Moments of the MOIPL distribution

Some important characteristics of a distribution like dispersion, skewness and kurtosis can be discussed
through its moments. The sth moment of Y is obtained by using pdf (2.1) as follows

E(Y s) =

∫ ∞

0
α β δ θβys−(α+1) (θ + y−α

)−β−1
{
1 − δ̄

[
1 − θβ

(
θ + y−α

)−β]}−2
dy. (3.1)

For |t| < 1, b > 0 we have the following series expansion

(1 − t)−b = Σ∞k=0
Γ(k + b)tk

Γ(b)k!
. (3.2)

Then employing (3.2) in (3.1), then

E(Y s) = Σ∞k=0(k + 1)
∫ ∞

0
α β δ θβys−(α+1) (θ + y−α

)−β−1
(
δ̄
)k [

1 − θβ
(
θ + y−α

)−β]k
dy. (3.3)

Apply the binomial expansion in (3.3), then we have

E(Y s) = Σ∞k=0Σk
j=0(−1) j(k + 1)

(
k
j

) ∫ ∞

0
αβδ

(
δ̄
)k
θβ+β jys−(α+1) (θ + y−α

)−(β+β j+1) dy.
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Table 1: Some moments, skewness and kurtosis of Y for selected parameters values

µ́s (i) (ii) (iii) (iv) (v) (vi) (vii)
µ́1 0.816 1.211 1.083 1.037 1.306 1.134 0.843
µ́2 0.846 1.652 1.430 1.191 1.813 1.361 0.806
µ́3 1.128 2.678 2.356 1.513 2.710 1.748 0.867
µ́4 2.248 6.136 5.678 2.157 4.469 2.464 1.063
S 1.874 2.868 1.931 0.925 1.709 1.804 0.916
K 19.035 36.297 21.372 7.409 11.899 12.855 6.631

(i) (δ = 0.5, θ = 0.5, α = 5, β = 0.5), (ii) (δ = 0.5, θ = 0.5, α = 5, β = 1.5), (iii) (δ = 1.5, θ = 0.5, α = 5, β = 0.5), (iv)
(δ = 1.5, θ = 0.5, α = 7, β = 0.5), (v) (δ = 1.5, θ = 0.5, α = 7, β = 1.5), (vi) (δ = 0.5, θ = 0.5, α = 7, β = 1.5) and (vii)
(δ = 0.5, θ = 0.5, α = 7, β = 0.5).

After some simplification, the sth moment of MOIPL distribution is given by

E(Y s) = Σ∞k=0A jθ
−s
α B

(
1 −

s
α
, β + β j +

s
α

)
α > s, (3.4)

where, A j = Σ∞k=0(k + 1)
(

k
j

)
βδ(δ̄)k and B(· , ·) is the beta function.

Measures of skewness and kurtosis are calculated from the central moments using the well-known
relationships. Further, the moment generating function is obtained as follows,

My(t) = Σ∞k,s=0
θ
−s
α ts

s!
A jB

(
1 −

s
α
, β + β j +

s
α

)
, α > s.

The sth negative moment of MOIPL distribution (2.1) can be simply obtained as

E(Y−s) = Σ∞k=0A jθ
s
α B

(
1 +

s
α
, β + β j −

s
α

)
.

Additionally, the sth incomplete moment of Y can be obtained from (2.1) as follows

ms(y) =

∫ y

0
α β δ θβxs−(α+1) (θ + x−α

)−β−1
{
1 − δ̄

[
1 − θβ

(
θ + x−α

)−β]}−2
dx. (3.5)

Employing series expansion (3.2) and binomial expansion in (3.5), then we have

ms(y) = Σ∞k=0A jθ
−s
α B

(
1 −

s
α
, β + β j +

s
α
,

θ

θ + y−α

)
,

where, B(· , · , t) is the incomplete beta function. The Bonferroni and Lorenz curves are an important
application of m1(y), where m1(y) is the first incomplete moment. Another application involving m1(y)
is related to the deviations from the mean and median.

Table 1 presents some empirical values of moments of order 1, 2, 3, and 4, the skewness (S ) and the
kurtosis (K) of Y for some determined values of the parameters (i) (δ = 0.5, θ = 0.5, α = 5, β = 0.5),
(ii) (δ = 0.5, θ = 0.5, α = 5, β = 1.5), (iii) (δ = 1.5, θ = 0.5, α = 5, β = 0.5), (iv) (δ = 1.5, θ = 0.5, α =

7, β = 0.5), (v) (δ = 1.5, θ = 0.5, α = 7, β = 1.5), (vi) (δ = 0.5, θ = 0.5, α = 7, β = 1.5) and (vii)
(δ = 0.5, θ = 0.5, α = 7, β = 0.5).

3.2. Conditional moments

For lifetime models, it is of interest to obtain the conditional moments and the mean residual lifetime
(MRL) function. The nth conditional moment is defined by

Ξn(t) =
1

F(t)

∫ ∞

t
(y − t)n f (y)dy. (3.6)
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The nth moment of the residual life of MOIPL distribution is obtained by using pdf (2.1) and binomial
expansion in (3.6) as follows

Ξn(t) =

Σn
i=0(−1)n−i

(
n
i

)
tn−i

F(t; υ)

∫ ∞

t
α β δ θβyn−(α+1) (θ + y−α

)−β−1
{
1 − δ̄

[
1 − θβ

(
θ + y−α

)−β]}−2
dy. (3.7)

Using series expansion (3.2) and binomial expansion in (3.7), then we have

Ξn(t) =
1

F(t; υ)
Σ∞k=0Σn

i=0(−1)n−i
(

n
i

)
tn−iA jθ

−n
α B

(
1 −

n
α
, β + β j +

n
α
,

t−α

θ + t−α

)
, (3.8)

where B(· , · , t) is the incomplete beta function. For, n = 1 in (3.8), we obtain the MRL of MOIPL
model, which it has many applications in some fields.

Moreover, the reversed residual life (RRL) is defined as the conditional random variable t−Y |Y 6 t
which denotes the time elapsed from the failure of a component given that its life is less than or equal
to t. The nth moment of the RRL is given by

ωn(t) =
1

F(t)

∫ t

0
(y − t)n f (y)dy. (3.9)

The nth moment of the RRL of MOIPL distribution is obtained by binomial expansion twice time, and
series expansion (3.2) in (3.9) as follows

ωn(t) =
1

F(t; υ)
Σ∞k=0Σn

i=0(−1)n−i
(

n
i

)
tn−iA jθ

−n
α B

(
1 −

n
α
, β + β j +

n
α
,

θ

θ + t−α

)
, α > n. (3.10)

For, n = 1 in (3.10), we get the mean of RRL which represents the waiting time elapsed since the
failure of an item on condition that this failure had occurred. Also, it is known as the mean waiting
time or the mean inactivity time.

3.3. Rényi entropy

The entropy affords great tool to evaluate the amount of information (or uncertainty) exists in a
random observation relating to its parent distribution. A small value of entropy provides the smaller
uncertainty in the data. The Rényi entropy of a random variable Y is defined by

Reλ(Y) =
1

1 − λ
log

∫ ∞

−∞

f (y)λdy, λ > 0 and λ , 1.

The Rényi entropy of MOIPL distribution is obtained by using pdf (2.1), binomial expansion and
expansion (3.2) as follows

Reλ(Y) =
1

1 − λ
log

[
Σ∞k=0Σk

j=0
(−1) jΓ(k + 2λ)

Γ(2λ)k!

(
k
j

) (
αβδθβ

)λ (
δ̄
)k
θβ j

∫ ∞

0
y−λ(α+1) (θ + y−α

)−λ(β+1)−β j dy
]
.

So, after some manipulation, the Rényi entropy of MOIPL distribution is

Reλ(Y) =
1

1 − λ
log

[
Σ∞k=0D jθ

(λ−1)
α B

(
λ(α + 1) − 1

α
, λ(β + 1) + β j −

λ(α + 1) − 1
α

)]
,
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where,

D j = Σk
j=0

(−1) jΓ(k + 2λ)
Γ(2λ)k!

(
k
j

)
αλ−1 (βδ)λ

(
δ̄
)k
.

3.4. Stochastic ordering

Let X1 and X2 are independent random variables with cdfs F1(x) and F2(x) respectively, then X1 is
said to be smaller than X2 in the following ordering (Shaked and Shanthikumar, 1994); if the following
holds;

• Stochastic order (X1 6sr X2), if F1(x) ≥ F2(x) for all x.

• Likelihood ratio order (X1 6lr X2), if f1(x)/ f2(x) is decreasing in x.

• Hazard rate order (X1 6hr X2), if h1(x) ≥ h2(x), for all x.

• Mean residual life order (X1 6mrl X2) if m1(x) ≥ m2(x), for all x.

Theorem 1. Let X1 ∼ MOIPL (α1, β1, δ1, θ) and X2 ∼ MOIPL (α2, β2, δ2, θ). If α1 ≥ α2, δ1 ≥ δ2,
β1 ≥ β2, then X1 6sr X2, X1 6hr X2, X1 6mrl X2 and X1 6sr X2.

Proof: It is sufficient to show fX1 (x)/ fX2 (x) is a decreasing function of x; the likelihood ratio is

fX1 (x)
fX2 (x)

=
α1β1δ1θ

β1 x−(α1+1) (θ + x−α1 )−β1−1
{
1 − δ̄1

[
1 − θβ1 (θ + x−α1 )−β1

]}−2

α2β2δ2θβ2 x−(α2+1) (θ + x−α2 )−β2−1
{
1 − δ̄2

[
1 − θβ2 (θ + x−α2 )−β2

]}−2 .

Therefore,

d
dx

log
fX1 (x)
fX2 (x)

=
(α2 − α1)

x
−
α1(β1 + 1)x−α1−1

θ + x−α1
+
α2(β2 + 1)x−α2−1

θ + x−α2
+

2δ̄1θ
β1β1α1(θ + x−α1 )−β1−1x−α1−1{

1 − δ̄1

[
1 − θβ1 (θ + x−α1 )−β1

]}
−

2δ̄2θ
β2β2α2(θ + x−α2 )−β2−1x−α2−1{

1 − δ̄2

[
1 − θβ2 (θ + x−α2 )−β2

]} .

Now for α1 ≥ α2, δ1 ≥ δ2, and β1 ≥ β2, then (d/dx) log
[
fX1 (x)/ fX2 (x)

]
6 0, which implies that X2 is

stochastically greater than X1 with respect to likelihood ratio order i.e., X1 6lr X2 Similarly, we can
conclude for X1 6hr X2, X1 6mlr X2, and X1 6sr X2. �

3.5. Quantile function

The quantile function of Y has MOIPL distribution, for q ∈ (0, 1), is obtained by inverting (2.2) as
follows

θβ
(
θ + y−αq

)−β {
1 − δ̄

[
1 − θβ

(
θ + y−αq

)−β]}−1
= q,

which gives;

yq = θ
−1
α

( qδ
1 − qδ̄

) −1
β

− 1


−1
α

, 0 < q < 1. (3.11)



106 Amal S. Hassan, Said G. Nassr

Table 2: Percentage points for some values of parameters

Percentage point (a) (b) (c) (d) (e) (f)
25% 0.0017 0.7521 1.5079 0.8293 0.7856 0.7898
50% 0.0625 1.8517 2.8965 5.2486 1.2819 1.2025
75% 1.2656 4.9295 5.8011 39.899 2.1581 1.7415
85% 5.8000 8.9581 8.7729 135.895 2.9430 2.0524
95% 81.450 28.9861 19.4827 1469.224 5.3540 2.4843

(a) (δ = 0.5, θ = 0.5, α = 0.5, β = 0.5), (b) (δ = 0.5, θ = 0.5, α = 1, β = 1.5), (c) (δ = 1.5, θ = 0.5, α = 1.5, β = 1.5), (d)
(δ = 1.5, θ = 1.5, α = 0.5, β = 2), (e) (δ = 1.5, θ = 1.5, α = 2, β = 1.5), and (f) (δ = 0.8, θ = 1, α = 2, β = 1.5).

Putting, q = 0.25, 0.5 and 0.75 in (3.11), we get the first quantile (25%), median (50%) and third
quantile (75%). If U is a uniform variate on the unit interval (0, 1), then the random variable Y = yq at
q = U follows (2.2). By solving Equation (3.11) numerically, the percentage points yq are computed
at some determined values of the parameters. (a) (δ = 0.5, θ = 0.5, α = 0.5, β = 0.5), (b) (δ = 0.5, θ =

0.5, α = 1, β = 1.5), (c) (δ = 1.5, θ = 0.5, α = 1.5, β = 1.5), (d) (δ = 1.5, θ = 1.5, α = 0.5, β = 2), (e)
(δ = 1.5, θ = 1.5, α = 2, β = 1.5), and (f) (δ = 0.8, θ = 1, α = 2, β = 1.5). These numerical values are
provided in the Table 2.

4. ML estimation based on TIC samples

Here, the ML estimators of the model parameters are determined via TIC scheme. Approximate CIs
are obtained.
Let Y = (Y1:n < Y2:n < · · · < Yr:n) is of TIC sample of size r from a life test on n items whose lifetimes
have the MOIPL distribution with set of parameters υ = (α, θ, β, δ). Based on TIC, the test is stopped
at specified time τ before all n items have failed. For simplicity, we write yi instead of yi:n, hence the
likelihood function in this situation is given by

L(υ|y) =
(
αβθβ

)r
δn

[
Πr

i=1y−(α+1)
i w−(β+1)

i

(
1 − δ̄qi

)−2
] [

q∗
](n−r)

[
1 − δ̄q∗

]−(n−r)
, (4.1)

where; wi = (θ + y−αi ) , w∗ = (θ + τ−α) , qi = (1 − θβw−βi ), and q∗ = (1 − θβ(w∗)−β).
The log-likelihood function for the vector of parameters υ = (α, θ, β, δ) is

ln L
(
υ|y

)
∝ r lnα + r ln β + n ln δ + rβ ln θ − (α + 1)Σr

i=1 ln yi − (β + 1)Σr
i=1 ln(wi)

− 2Σr
i=1 ln

(
1 − δ̄qi

)
+ (n − r) ln q∗ − (n − r) ln

(
1 − δ̄q∗

)
.

The partial derivatives with respect to the unknown parameters are given as follows:

∂ ln L
(
υ|y

)
∂α

=
r
α
− Σr

i=1 ln yi + (β + 1)Σr
i=1y−αi ln yiw−1

i − 2βθβδ̄Σr
i=1y−αi ln yiw

−(β+1)
i

[
1 − δ̄qi

]−1

− (n − r)βθβτα ln τ (w∗)−(β+1)
[
δ̄
(
1 − δ̄q∗

)−1
− (q∗)−1

]
, (4.2)

∂ ln L
(
υ|y

)
∂θ

=
rβ
θ
− (β + 1)Σr

i=1w−1
i − 2δ̄βθβ−1Σr

i=1w−βi

[
1 − δ̄qi

]−1
+ 2δ̄βθβΣr

i=1w−(β+1)
i

[
1 − δ̄qi

]−1

+ (n − r)βθβ−1
[
θ (w∗)−(β+1)

− (w∗)−β
] [

(q∗)−1
+ δ̄

(
1 − δ̄ (q∗)−1

)−1
]
, (4.3)
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∂ ln L
(
υ|y

)
∂β

=
r
β

+ r ln θ − Σr
i=1 ln(wi) + 2δ̄θβΣr

i=1w−βi [ln(wi) − ln θ]
[
1 − δ̄qi

]−1

+ (n − r)θβ (w∗)−β [ln(w∗) − ln θ]
[
δ̄
{
1 − δ̄ (q∗)−1

}−1
+ {q∗}−1

]
, (4.4)

∂ ln L
(
υ|y

)
∂δ

=
n
δ
− 2Σr

i=1qi

[
1 − δ̄qi

]−1
− (n − r)q∗

[
1 − δ̄q∗

]−1
. (4.5)

The ML estimators of the model parameters are the solution of non-linear Equations (4.2) to (4.5)
after setting them equal to zero. These equations are very difficult to obtain, so iterative procedures
are employed.

In case of interval estimation of the model parameters, we must obtain the 4×4 observed information
matrix I = I(υ) (for u, v = α, θ, β, δ). Under standard regularity conditions, the multivariate normal
N4(0, I−1(υ̂)) distribution is used to construct approximate CIs for the parameters. The approximate
100(1 − γ)% two sided CIs for α, θ, β, δ are respectively, given by:

α̂ ± Z γ
2
σα̂, θ̂ ± Z γ

2
σθ̂, β̂ ± Z γ

2
σβ̂, and δ̂ ± Z γ

2
σδ̂.

where, Zγ/2 is the
[
100(1 − γ)/2

]th standard normal percentile and σ(·) is the standard deviation for
the ML estimators.

5. Bayesian estimation via TIC

Here, the Bayesian estimators of the model parameters are obtained based on TIC scheme. The
Bayesian estimator using squared error loss (SELF) function under the assumption of non-informative
of the population parameters for MOIPL distribution is obtained. We consider the Bayesian estimation
under the assumption that the random variables (α, θ, β, δ) independently distributed with the following
uniform priors

g(α) ∝ α−1, g(θ) ∝ θ−1, g(β) ∝ β−1, and g(δ) ∝ δ−1.

Hence, the joint prior pdf of the parameters can be expressed by

π∗(α, θ, β, δ) ∝ (αθβδ)−1 . (5.1)

Combining (4.1) and (5.1) to obtain the posterior density of υ = (αθβδ) given the data as follows

π
(
υ|y

)
∝ (αβ)r−1θrβ−1δn−1

[
Πr

i=1y−(α+1)
i w−(β+1)

i

(
1 − δ̄qi

)−2
] [

q∗
(
1 − δ̄q∗

)−1
](n−r)

. (5.2)

Therefore, the Bayesian estimators of parameters, υ = (αθβδ) under SELF; denoted by ũ(SELF)(υ) can
be calculated through the following equations as follows

ũ(SELF)(υ) = E
(
υ|y

)
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
υL

(
υ|y

)
π
(
υ|y

)
dαdθdβdδ. (5.3)

Generally, the ratio of four integrals given by Equations (5.2) and (5.3) cannot be obtained in a closed
form. In this case, we use the MCMC technique to generate samples from the posterior distributions
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and then compute the Bayesian estimators of the individual parameters. The conditional posterior
densities of α, θ, β, and δ are as follows

π1

(
α|y

)
∝ αr−1

[
Πr

i=1y−(α+1)
i w−(β+1)

i

(
1 − δ̄qi

)−2
] [

q∗
(
1 − δ̄q∗

)−1
](n−r)

,

π2

(
θ|y

)
∝ θrβ−1

[
Πr

i=1w−(β+1)
i

(
1 − δ̄qi

)−2
] [

q∗
(
1 − δ̄q∗

)−1
](n−r)

,

π3

(
β|y

)
∝ βr−1θrβ−1

[
Πr

i=1w−(β+1)
i

(
1 − δ̄qi

)−2
] [

q∗
(
1 − δ̄q∗

)−1
](n−r)

,

π4

(
δ|y

)
∝ δn−1

[
Πr

i=1

(
1 − δ̄qi

)−2
] [

1 − δ̄q∗
](n−r)

.

Therefore, to generate from this distributions, we use the Metropolis-Hastings method. To run the
Gibbs sampler algorithm, we start with the ML estimates (MLEs). We then draw samples from various
full conditionals, in run, using the most recent values of all other conditioning variables unless some
systematic pattern of convergence is achieved.

6. Monte Carlo simulation

In this section, a simulation study is carried out to evaluate the performance of the MLE. Measures
like mean square errors (MSEs), standard errors (SEs), and average lengths (ALs) of the CIs are
calculated. The simulation study is formed as follows:

Step 1: 10,000 random samples of size n = 30, 40, 50, 100, and 150 are generated from MOIPL
distribution by using relation (3.11).

Step 2: Four sets of parameter values are chosen as; Case I ≡ (α = 0.75, θ = 0.5, β = 1.5, δ = 0.25),
Case II ≡ (α = 0.5, θ = 0.25, β = 2, δ = 0.25), Case III ≡ (α = 1.25, θ = 1.5, β = 0.75, δ =

0.75), and Case IV ≡ (α = 1.5, θ = 0.25, β = 0.75, δ = 0.5). The censoring time is selected
as τ = 2 and 5.

Step 3: MLEs and Bayes estimates (BEs) of the parameters are obtained.

Step 4: MCMC technique (as M-H algorithm) is used to get the BEs of α, θ, β, and δ under SELF via
10,000 iterations.

Step 5: Compute MSEs, SEs and ALs with confidence level γ = 0.95 of all estimates and the results
are listed in Table 3 and Table 4. We notice the following about the performance of estimates:

• For all cases, it is clear that MSEs, SEs, ALs, and MC error of BEs and MLEs decrease as
sample size increases (see for example Figure 2 and Figure 3).

• BEs have smallest MSE compared to MLEs (Figure 2 and Figure 3).

• The MSEs of the MLEs for δ are smaller than the corresponding for the other parameters
of all the cases except Case III. Also, the ALs of the MLEs of δ take the smallest values
compared to the other parameters in almost all of the cases.

• The MSEs of the BEs for α are smaller than the MSEs of the corresponding for the other
parameters for all cases except Case IV.

• The MSEs of MLEs decrease as τ increases. Also, Case I has the smallest MSEs and ALs
compared to the other cases.
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Table 3: MSEs, SEs and ALs of the MLEs and BEs for MOIPL distribution at τ = 2

n Method Measure Case I Case II
α = 0.75 β = 1.5 δ = 0.25 θ = 0.5 α = 0.5 β = 2 δ = 0.25 θ = 0.25

MSE 0.0877 0.3703 0.0810 0.9634 0.0700 0.6536 0.0533 0.5217
ML SE 0.0298 0.0936 0.0498 0.0737 0.0304 0.1383 2.5077* 0.1176

AL 0.1170 0.3670 0.1950 0.2890 0.1190 0.5420 9.8300* 0.4610
30 MSE 1.7570* 0.0510 0.1940 0.0170 0.1490 0.3920 0.1570 0.2820

Bayesian SE 0.5770* 3.5580* 0.0100 0.1290* 4.4070* 0.0130 3.5020* 0.0140
AL 0.0140 0.2766 0.0108 0.3776 0.0277 0.0039 0.1891 0.4286

MC error 0.2030* 1.9210* 5.7420* 0.0490 2.3510* 7.0590* 1.8910* 7.7210*
MSE 0.0802 0.3168 0.0390 0.8793 0.0606 0.6005 0.0530 0.4560

ML SE 0.0237 0.0726 0.0284 0.0483 0.0243 0.1145 1.8346* 0.0944
AL 0.0930 0.2850 0.1110 0.1890 0.0950 0.4490 7.1920* 0.3700

40 MSE 1.2650* 0.0390 0.1930 0.0150 0.1180 0.2590 0.1420 0.1920

Bayesian SE 1.5950* 7.1010* 8.5350* 0.2880* 1.3360* 4.9280* 3.0200* 8.4050*
AL 0.0230 0.0560 0.1430 2.1000* 0.0770 0.2160 0.0050 0.2430

MC error 0.9720* 4.4670* 5.4050* 0.1590* 0.7810* 3.0580* 1.8550* 5.3170*
MSE 0.0750 0.2739 0.0240 0.8146 0.0552 0.5588 0.0528 0.3862

ML SE 0.0197 0.0603 0.0177 0.0430 0.0187 0.0966 1.3310* 0.0772
AL 0.0770 0.2370 0.0700 0.1690 0.0730 0.3790 5.2180* 0.3030

50 MSE 0.4870* 0.0230 0.1930 0.0120 0.1060 0.2190 0.1200 0.1860

Bayesian SE 0.6430* 3.6420* 7.2520* 0.1970* 2.6740* 4.1210* 2.4880* 6.4810*
AL 0.0080 0.0430 0.1410 1.8000* 0.0520 0.0610 0.0050 0.1620

MC error 0.4110* 2.5430* 5.1150* 0.1120* 1.8770* 2.8550* 1.7400* 4.5750*
MSE 0.0616 0.2537 0.0138 0.7667 0.0526 0.5371 0.0526 0.3626

ML SE 0.0123 0.0383 5.7459* 0.0290 0.0118 0.0689 0.7611* 0.0536
AL 0.0480 0.1500 0.0230 0.1140 0.0460 0.2700 2.9830* 0.2100

100 MSE 0.2310* 0.0160 0.1910 0.0100 0.0960 0.2030 0.1140 0.1690

Bayesian SE 0.7360* 2.3470* 5.3950 0.1140* 1.9920* 3.3300* 1.7230* 4.3950*
AL 0.0050 0.0240 0.1170 1.5000* 0.0450 0.0070 0.0040 0.1020

MC error 0.6990* 2.3020* 5.3980* 0.0780* 1.9720* 3.3020* 1.7010* 4.3940*
MSE 0.0585 0.1635 0.0114 0.6611 0.0504 0.5164 0.0525 0.3572

ML SE 8.5658* 0.0254 4.2179* 0.0116 9.6159* 0.0522 0.6094* 0.0433
AL 0.0340 0.1000 0.0170 0.0450 0.0380 0.2040 2.3890* 0.1700

150 MSE 0.0090* 0.0150 0.1890 8.1920* 0.0730 0.1690 0.1010 0.1530

Bayesian SE 0.2470* 1.5730* 4.3470* 0.1060* 2.9030* 4.7660* 1.4790* 5.5580*
AL 0.0050 0.0050 0.0270 1.3000* 0.0220 0.0060 0.0040 0.0660

MC error 0.2510* 1.9070* 5.3240* 0.0090* 3.5560* 5.8360* 1.7840* 6.8270*

* Indicate that the value multiply 10−3

• The MSEs of Bayes estimates decrease as τ increases. Also, the SEs of MLEs decrease as
τ increases.
• The SEs of BEs for (α, β) based on Case IV, are smaller than the corresponding SEs for

other parameters in most cases.
• The SEs of MLEs for δ are smaller than the SEs of the corresponding other parameters for

all the cases. Also, the SEs of BEs for α are smaller than the corresponding SEs for other
parameters in most cases.
• The SEs of the MLEs in Case I get the smallest values compared to the other cases.
• The SEs of MLE for δ are smaller than the corresponding for the other estimates for all

cases.
• In Case I, the MLEs and BEs have good statistical properties than the corresponding cases

of parameters in almost all of the situations (Figure 5). But in the Case IV the BEs for
parameter α have smallest properties than other cases of parameters (Figures 4).
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Table 4: MSEs, SEs and ALs of the MLEs and BEs for MOIPL distribution at τ = 5

n Method Measure Case III Case IV
α = 1.25 β = 0.75 δ = 0.75 θ = 1.5 α = 1.5 β = 0.75 δ = 0.5 θ = 0.25

MSE 0.1600 1.1383 0.5171 0.9427 0.6949 0.8598 0.2273 0.3375
ML SE 0.0719 0.1178 0.0946 0.1435 0.0468 0.1012 0.0592 0.0889

AL 0.2820 0.4620 0.3710 0.5620 0.1830 0.3970 0.2320 0.3490
30 MSE 0.0238 0.0959 0.0111 0.5478 0.2561 2.4120* 0.1492 0.2754

Bayesian SE 1.3551* 0.0177 0.0100 0.0239 1.9960* 3.6330* 0.0110 0.0220
AL 0.0140 0.2766 0.0108 0.3776 0.0277 0.0039 0.1891 0.4286

MC error 0.4835* 9.7190* 5.2840* 0.0131 1.0620* 1.9660* 5.9710* 0.0192
MSE 0.1351 1.1265 0.3658 0.9420 0.6878 0.7682 0.2209 0.2844

ML SE 0.0557 0.0977 0.0427 0.1197 0.0348 0.0746 0.0484 0.0714
AL 0.2180 0.3830 0.1680 0.4690 0.1360 0.2930 0.1900 0.2800

40 MSE 0.0177 0.0806 0.0103 0.4951 0.1624 2.0475* 0.0845 0.2363

Bayesian SE 0.8579* 3.6710* 6.6790* 0.0210 0.4767* 3.2220* 5.9130* 0.0230
AL 0.0070 0.0762 0.0056 0.3698 0.0080 0.0034 0.1029 0.4280

MC error 0.3890* 2.2920* 4.0510* 0.0134 0.2135* 2.0040* 3.7340* 0.0148
MSE 0.1127 1.0923 0.3404 0.8060 0.6844 0.7618 0.1492 0.2515

ML SE 0.0438 0.0788 0.0374 0.0877 0.0310 0.0739 0.0208 0.0567
AL 0.1720 0.3090 0.1470 0.3440 0.1210 0.2900 0.0810 0.2220

50 MSE 0.0171 0.0801 0.0101 0.4933 0.0408 1.7776* 0.0802 0.1700

Bayesian SE 0.7600* 1.3130* 5.9740* 0.0180 0.4560* 2.2660* 3.5950* 0.0150
AL 0.0064 0.0110 0.0050 0.3692 0.0075 0.0030 0.1019 0.3830

MC error 0.3113* 0.8149* 3.9960* 0.0127 0.1966* 1.5930* 2.5300* 0.0106
MSE 0.0860 1.0869 0.3271 0.7856 0.6761 0.7409 0.1466 0.2477

ML SE 0.0238 0.0520 0.0218 0.0671 0.0212 0.0491 0.0156 0.0409
AL 0.0930 0.2040 0.0850 0.2630 0.0830 0.1920 0.0610 0.1600

100 MSE 0.0156 0.0653 0.0096 0.4731 0.0118 0.4301* 0.0764 0.1599

Bayesian SE 0.6142* 1.3110* 3.9655* 0.0120 0.2329* 1.1590* 1.4430* 0.0120
AL 0.0055 0.0090 0.0044 0.3594 0.0048 0.4301* 0.0764 0.1599

MC error 0.3088* 0.2649* 3.7880* 0.0116 0.9897* 1.5911* 1.6020* 0.0090
MSE 0.0798 1.0422 0.3167 0.5215 0.6707 0.7156 0.1383 0.2442

ML SE 0.0184 0.0402 0.0173 0.0574 0.0171 0.0381 9.3703* 0.0314
AL 0.0720 0.1570 0.0680 0.2040 0.0670 0.1490 0.0370 0.1230

150 MSE 0.0130 0.0458 9.0341* 0.4448 3.0079* 0.3761* 0.0018* 0.1094

Bayesian SE 0.5257* 1.0570* 3.2910* 6.9400* 0.2081* 1.1344* 0.0966* 5.9850*
AL 0.0032 0.0074 2.6400* 0.0556* 0.0014 0.0736* 0.0014 0.1267

MC error 0.3607* 0.7434* 4.9270* 8.0370* 0.4623* 0.1880* 0.0540* 0.0073

* Indicate that the value multiply 10−3

Figure 2: MSEs of θ̂ for Case II at τ = 2. Figure 3: MSEs of δ̂ for Case IV at τ = 5.
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Figure 4: MSEs of α̂ for all Cases at n = 150. Figure 5: MSEs of β̂ for all Cases at n = 100.

Figure 6: Profile log-likelihood of β. Figure 7: Profile log-likelihood of θ.

Figure 8: Profile log-likelihood of α. Figure 9: Profile log-likelihood of δ.

• Figures 6–9 plots the profile log-likelihood function of (α, θ, β, δ). These plots are uni-
modal functions.

• The history plots of MCMC estimates for α, θ, β, and δ using MCMC sampler performance
are represented in Figure 10 and Figure 11. The plots of chains for all parameters look
like a horizontal band with no long upward or downward trends which are indicators to
convergence.
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Figure 10: Convergence plots of MCMC estimates for α = 0.75, β = 1.5 at n = 50.

Figure 11: Convergence plots of MCMC estimates for δ = 0.5, θ = 0.25 at n = 100.

7. Real data modelling

In this section, two real data sets are used to compare MOIPL model with IPL distribution Kumaraswamy
Weibull Lomax (KWL) distribution, PL distribution, inverse exponentiated Lomax (IEL) distribution,
Weibull inverse Lomax (WIL) distribution and exponentiated Lomax (EL). The two data sets are used
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Table 5: The MLEs, SEs and goodness-of-fit measures of the models for data set I

Model MLE SE P-value K-S W∗ A∗

α̂ = 3.280 0.378

MOIPL β̂ = 0.291 0.417 0.76486 0.23514 0.06152 0.34677
δ̂ = 46.403 128.094
θ̂ = 3.230 5.989
α̂ = 2.167 8.435

KWL β̂ = 4.586 12.963 0.63502 0.36498 0.08629 0.53444
λ̂ = 3.025 0.937
θ̂ = 6.410 22.784
λ̂ = 6.520 13.090

WIL â = 18.962 14.618 0.64673 0.35327 0.08310 0.51486
b̂ = 0.455 0.927
β̂ = 3.209 2.746
α̂ = 0.690 0.294

IPL λ̂ = 0.134 0.145 0.73882 0.26118 0.08981 0.62754
β̂ = 3.464 0.725
λ̂ = 0.015 0.043

EL α̂ = 3.716 0.789 0.55107 0.44893 0.08033 0.52282
θ̂ = 78.322 221.151
α̂ = 3.002 0.955

IEL θ̂ = 14.970 11.248 0.62910 0.37090 0.08684 0.53680
λ̂ = 2.828 2.436
λ̂ = 6.1970 9.837

PL α̂ = 1.780 2.988 0.68041 0.31959 0.07169 0.44463
β̂ = 2.573 1.255

to investigate the usefulness of proposed distribution in survival and life time analysis. The data
set I represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli,
observed and reported by Bjerkedal (1960). The data set I is listed as follows:

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08,
1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53,
1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3,
2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

The data set II represents 84 observations of failure times (in hours) for a particular wind shield
model reported by (Murthy et al., 2004):

0.040, 0.301, 0.309, 0.557, 0.943, 1.07, 1.124, 1.248, 1.281, 1.281, 1.303, 1.432, 1.48, 1.505, 1.506,
1.568, 1.615, 1.619, 1.652, 1.652, 1.757, 1.866, 1.876, 1.899, 1.911, 1.912, 1.914, 1.981, 2.01, 2.038,
2.085, 2.089, 2.097, 2.135, 2.154, 2.19, 2.194, 2.223, 2.224, 2.229, 2.3, 2.324, 2.385, 2.481, 2.61,
2.625, 2.632, 2.646, 2.661, 2.688, 2.823, 2.89, 2.902, 2.934, 2.962, 2.964, 3, 3.103, 3.114, 3.117,
3.166, 3.344, 3.376, 3.443, 3.467, 3.478, 3.578, 3.595, 3.699, 3.779, 3.924, 4.035, 4.121, 4.167, 4.24,
4.255, 4.278, 4.305, 4.376, 4.449, 4.485, 4.57, 4.602, 4.663.

In order to compare the distributions, we consider the following criteria Kolmogorov-Smirnov
(K-S) test along with its p-value, Cramér-von Mises (W*) and Anderson-Darling (A*) goodness-of-
fit test statistics. However, the model with minimum values for these statistics could be chosen as the
best model to fit these data. Table 5 and Table 6 give the MLEs and their SEs for the two data sets.
Also, these tables compare the MOIPL model with other important competitive distributions. Table 5
and Table 6 show that MOIPL model gives the lowest values for the K-S, W*, A* statistics and largest
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Table 6: The MLEs, SEs and goodness-of-fit measures of the models for data set II

Model MLE SE P-value K-S W∗ A∗

α̂ = 4.533 0.745

MOIPL β̂ = 0.144 0.136 0.76141 0.23859 0.09219 0.66719
δ̂ = 20.905 39.357
θ̂ = 0.043 0.086
α̂ = 12.516 16.647

KWL β̂ = 69.807 88.159 0.74421 0.25579 0.10498 0.95294
λ̂ = 2.795 0.365
θ̂ = 13.393 9.952
α̂ = 0.270 0.061

IPL λ̂ = 0.179∗ 0.061∗ 0.73210 0.26790 0.11870 0.98121
β̂ = 6.611 0.306
λ̂ = 0.011 0.011

EL α̂ = 3.591 0.623 0.16293 0.83707 0.19022 1.58427
θ̂ = 72.014 72.654
α̂ = 150.614 46.402

IEL θ̂ = 1.523 0.316 0.73210 0.26790 2.02712 11.08269
λ̂ = 0.011 3.761∗

* Indicate that the value multiply 10−3

(a) (b)
Figure 12: TTT plots (a) The data set I and (b) The data set II.

p-value among all fitted models.
In the applications, the information about the hazard shape can help in selecting a particular model.

For this purpose, we refine our descriptive analysis by showing the corresponding total time test
(TTT) plot. Figure 12 presents TTT plots of two data sets, they show a concave curve indicating that
an increasing hrf for the fitting model is appropriate, then MOIPL distribution which has increasing
shape of hazard function would be appropriate for analyzing these lifetime data.

Furthermore, we plot the histogram, estimated pdf and PP plots for all models for both data.
Plots of empirical cdf, estimated pdf, PP plots and QQ plots of MOIPL distribution for both data are
displayed (Figure 13 and Figure 14).

Furthermore, the MLEs and BEs of parameters of MOIPL distribution and the corresponding SEs
and MC error for both real data sets based on TIC are listed in Table 7.

Based on Table 7, we conclude the following

• It is clear that SEs and MC error of BEs and MLEs decrease as sample size increases.

• The SEs of the MLEs for real data set II get the smallest values compared to the real data set I.
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Figure 13: Fitted pdf, cdf, PP-plot and QQ-plot of MOIPL distribution for data set I.

Figure 14: Fitted pdf, cdf, PP-plot and QQ-plot of MOIPL distribution for data set II.

• The SEs of the BEs in the real data set I get the smallest values compared to the real data set II.

• For both real data, the SEs of the parameters α and δ take the smallest values compared to other
parameters based on ML method. While, the SEs of the parameter β get the smallest values
compared to the other parameters based on Bayesian method.

• Generally speaking, application to the considered real data confirm the above theoretical results.
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Table 7: MLEs, BEs, SEs, and MC error for MOIPL distribution for both data sets

Real data n Parameters ML Bayesian
Estimate SE Estimate SE MC error

30

α 1.5223 0.3294 0.7073 5.9120* 0.3387*
β 2.2031 0.9603 0.2491 3.3033* 0.1958*
δ 1.3261 0.2170 0.4947 0.0388 3.3730*
θ 0.9672 0.8822 0.1937 0.0791 7.9430*

I 40

α 1.5548 0.2593 0.7083 5.7720* 0.3181*
β 2.3689 0.9081 0.2488 3.0040* 0.1913*
δ 1.3128 0.1792 0.4940 0.0381 3.2280*
θ 1.4894 0.7959 0.1690 0.0703 7.0620*

50

α 1.6521 0.2273 0.7076 5.7560* 0.3146*
β 2.4021 0.8374 0.2590 2.9750* 0.1883*
δ 1.4028 0.1611 0.4946 0.0357 3.1288*
θ 1.3000 0.6130 0.1760 0.0603 7.0570*

30

α 1.3521 0.2298 0.6875 5.1320* 0.2981*
β 1.8764 0.7195 0.2286 2.1190* 0.3894*
δ 1.8500 0.3417 0.9474 0.0365 3.5670*
θ 1.3552 0.9905 0.1815 0.0676 6.7890*

II 40

α 1.4269 0.2138 0.6588 5.1020* 0.2874*
β 2.2145 0.7091 0.2291 1.8020* 0.1047*
δ 1.7639 0.2237 0.9418 0.0352 3.0610*
θ 1.2670 0.7104 0.1228 7.2720* 0.7245*

50

α 1.5354 0.1940 0.6485 4.7730* 0.2451*
β 2.4250 0.6795 0.2485 1.4515* 0.1016*
δ 1.6546 01623 0.9403 0.0254 3.0224*
θ 1.0480 0.5057 0.2031 6.5530* 0.6574*

* Indicate that the value multiply 10−3

8. Concluding remarks

In this paper, we introduce a new four-parameter distribution, called Marshall-Olkin inverse power
Lomax distribution, which extends the inverse power Lomax distribution (Hassan and Abd-Alla,
2019). We provide some of its mathematical and statistical properties. We obtain explicit expressions
for the ordinary and incomplete moments, negative moments, moments of the residual life. We also
derive Rényi entropy and discuss the stochastic ordering. Maximum likelihood and Bayesian methods
of estimation are employed to estimate the population parameters based on Type I censored samples.
An approximate confidence intervals and Bayesian credible intervals for the population parameters
are discussed. Simulation study is provided to assess the model performance of parameters. Two
applications illustrate that the suggested distribution provides better fit than other competitive distributi
ons.
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