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Abstract
The two-dimensional confusion matrix used in credit assessment, biostatistics, and many other fields consists

of true positive, true negative, false positive, and false negative. Their rates, such as the true positive rate (TPR),
true negative rate (TNR), false positive rate, and false negative rate, can be applied to measure its accuracy. In this
study, we propose the TPR-TNR plot, a graphical method that can geometrically describe and explain these rates
based on the confusion matrix. The proposed TPR-TNR plot consists of two right-angled triangles. We obtain
that the TPR and TNR describe the acute angles of right-angled triangles in the plot. These acute angles can be
used to determine optimal thresholds corresponding to lots of accuracy measures.
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1. Introduction

Statistical classification results can be expressed by the 2 × 2 confusion matrix shown in Table 1 for
various areas such as biostatistics and credit evaluation. The true positive (TP) and true negative (TN)
in Table 1 represent the number of correctly classified disease and normal populations, respectively.
In other words, the TP is the number of patient with an actual disease will be positive, and the TN is
the number of normal people to be negative. However, the false positive (FP) and false negative (FN)
are numbers of groups that predicted disease as normal and predicted normal as disease, respectively
(Metz and Kronman, 1980; Swets, 1988; Hsieh and Turnbull, 1996; Provost and Fawcett, 1997, 2001;
Engelmann et al., 2003; Pepe, 2003; Fawcett, 2004, 2006; Stein, 2005; Sonego et al., 2008; Hong et
al., 2010; Pontius and Si, 2014; Cho and Hong, 2015; Hong and Lee, 2018; Oehr and Ecke, 2020).

The following probability equations express the true positive rate (TPR) and true negative rate
(TNR). It is worth knowing that the TPR and TNR are also known as sensitivity and specificity,
respectively (Altman and Bland, 1994).

TPR = sensitivity =
TP

TP + FN
,

TNR = specificity =
TN

TN + FP
.

Let the parameter space θ represent the patient states and be assumed to consist of two elements,
{θd, θn}, where θd and θn mean disease/default/positive and non-disease/non-default/negative states,
respectively. For a random variable X, the conditional cumulative distribution functions of X given
disease and non-disease states are denoted by Fd(x) = P(X ≤ x|θd) and Fn(x) = P(X ≤ x|θn),

1 Corresponding author: Department of Statistics, Sungkyunkwan University, 25-2, Sungkyunkwan-ro, Jongno-gu, Seoul
03063, Korea. E-mail: cshong@skku.edu

Published 31 March 2021 / journal homepage: http://csam.or.kr
© 2021 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



162 Chong Sun Hong, Tae Gyu Oh

Table 1: Confusion matrix

Predicted
Disease Non-Disease

Actual Disease TP FN
Non-Disease FP TN

respectively. And generally suppose that Fd(x) ≥ Fn(x) for all x (Mets and Kronman, 1980; Hsieh and
Turnbull, 1996; Provost and Fawcett, 2001; Engelmann et al., 2003; Pepe, 2003; Fawcett, 2006). Then
the TPR and TNR are defined by TPR = Fd(x) and TNR = 1−Fn(x), respectively. Similarly, the false
positive rate (FPR) and false negative rate (FNR) are defined as FPR = Fn(x) and FNR = 1 − Fd(x),
respectively.

Based on statistical decision theory, the receiver operating characteristic (ROC) curve is a visual
tool that can easily identify the classifier’s performance in binary classification (Green and Swets,
1966; Bamber, 1975; Egan and Egan, 1975; Hanley and McNeil, 1982; Swets, 1988; Centor, 1991;
Zweig and Campbell, 1993; Fawcett, 2004; Vuk and Curk, 2006; Tasche, 2008). Since the ROC curve
is implemented with (1−TNR, TPR) in a unit length square, the TPR and TNR can be represented on
the ROC curve.

In this study, we propose a graphical method to describe the TPR and TNR geometrically. The
geometric representation consists of two right-angled triangles based on two sum equations of the
confusion matrix: TPR + FNR = 1, FPR + TNR = 1. This graphical method is called the TPR-TNR
plot, representing the TPR and TNR expressed geometrically on an upper half-circle. The TPR-TNR
plot is explored in terms of many accuracy measures for finding optimal thresholds (cutoff points).
Some characteristics of the TPR-TNR plot are derived with several distribution functions.

The remainder of the paper is organized as follows. Section 2 introduces the TPR-TNR plot, de-
scribing the geometric representation of the TPR, TNR, FPR, and FNR. Particularly, the TPR and TNR
are definded as functions of acute angles of right-angled triangles. The shapes, locations, and distance
of two right-angled triangles on an upper half-circle in the TPR-TNR plot describe the discriminant
power of two data sets. In Section 3, we explain three strategies for finding optimal thresholds using
the functions of two acute angles of the right-angled triangles. The first strategy is to maximize the
summation of the two acute angles. The second strategy is to maximize the product of two acute an-
gles, and the last strategy is to minimize the absolute value of the difference between the two acute
angles. We obtain that these methods have some relationship with many accuracy measures. In Section
4, we present various normal distribution functions to derive the TPR-TNR plot’s characteristics so
that two right-angled triangles in the TPR-TNR plot could geometrically explain a confusion matrix.
In Section 5, we illustrate the empirical data and describe the TPR-TNR plot based on the confusion
matrix. Section 6 presents the conclusions.

2. TPR-TNR plot

With an equation A + B = 1, one can draw a right-angled triangle with two short line segments of
lengths

√
A and

√
B, and one longest line segment of length 1. From the confusion matrix in Table 1,

the following three equations are obtained

TPR + FNR = 1, FPR + TNR = 1. (2.1)

Two right-angled triangles in Figure 1 can be implemented from two equations in (2.1). This plot is
based on the confusion matrix in Table 2.
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Table 2: An example of confusion matrix

Predicted
Disease Non-Disease

Actual Disease 80 20
Non-Disease 24 101

Figure 1: TPR-TNR plot.

From Figure 1, the length of the horizontal line is 1. The rightmost and leftmost segments are
represented by

√
FNR and

√
FPR, respectively. Therefore, θ1 and θ2 correspond to the right and left

right-angled triangles, respectively.

Remark 1. The two acute angles θ1 and θ2 in Figure 1 are defined by the following equations:

cos2 θ1 = TPR, cos2 θ2 = TNR.

Also FNR = cos2(π/2 − θ1) and FPR = cos2(π/2 − θ2). Hence, θ1 = cos−1
√

TPR and θ2 =

cos−1
√

TNR. Moreover, θ1 = sin−1
√

FNR, θ2 = sin−1
√

FPR. Therefore, the TPR and TNR are
described by two angles θ1 and θ2, so do the FPR and FNR in Figure 1.

Let A be the point where the sides corresponding to the TPR and FNR meet in the right triangle,
and let B be the point where the sides corresponding to the FPR and TNR meet in the left triangle. We
obtain that both points A and B are on the upper half-circle, and point A precedes point B.

Remark 2. The coordinates of point A and B are obtained, such as:

A =
(
TPR,

√
TPR FNR

)
=

(
Fd(x),

√
Fd(x) (1 − Fd(x))

)
,

B =
(
FPR,

√
FPR TNR

)
=

(
Fn(x),

√
Fn(x) (1 − Fn(x))

)
.

If both points A and B locate very closely, then the discriminant power is very poor. On the other
hand, in the case that the point A locates close to a coordinate (1, 0) and the point B locates close to
the origin (0, 0), then two different data sets are classified almost perfectly. Therefore, it might be said
that the farther point A is away from point B, the easier it is to classify the two data sets. Hence, the
distance between A and B points plays an important role to classify.

As both points A and B move from the origin to a coordinate (1, 0), the angle θ1 corresponding
to point A decreases from π/2 to 0, while the angle θ2 corresponding to the point B increases from
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0 to π/2. Also, it is found that as the random variable X increases from −∞ to ∞, cos2 θ1 increases
while cos2 θ2 decreases. From Table 2 and Figure 1, we obtain that TPR = 0.8000, TNR = 0.8080,
θ1 = 26.5651◦ and θ2 = 25.9877◦. Since the TPR and TNR have large values, two angles of θ1 and θ2
are similar and have small values.

3. Optimal thresholds on TPR-TNR plot

To determine optimal thresholds, many accuracy measures used the TPR and TNR, which are defined
as cos2 θ1 and cos2 θ2 on Remark 1. Some of them are the Youden index (J: Youden, 1950; Fluss et al.,
2005; Perkins and Schisterman, 2005), the maximum vertical distance (MVD: Krzanowski and Hand,
2009), the sum of sensitivity and specificity (SSS: Connell and Koepsell, 1985), the true rate which
is an average of the TPR and TNR (TR: Hong et al., 2010), the amended closet-to-(0, 1) (AC: Pepe,
2003; Perkins and Schisterman, 2006), the maximizing the accuracy area or the product of sensitivity
and specificity (AA: Brasil, 2010; Liu, 2012), and the symmetric point (SP: Moses et al., 1993; Pepe,
2003). Therefore, two acute angles cos2 θ1 and cos2 θ2 on the TPR-TNR plot could be applied to
determine optimal thresholds using the following three remarks.

Remark 3. An optimal threshold can be obtained by satisfying the following:

max
{
cos2 θ1 + cos2 θ2

}
.

Since the summation of cos2 θ1 and cos2 θ2 means the sum of the true positive and true negative ratios,
it is found that the maximization of this summation is equivalent to max{Fd(x) − Fn(x)}. Therefore,
the maximization of the summation of cos2 θ1 and cos2 θ2 plays an important role to evaluate the
discriminant power and determine optimal thresholds based on many accuracy measures such as the
J, MVD, SSS, TR, AC accuracy measures. These measures are linear functions of the well-known
Kolmogorov–Smirnov statistic (Hong and Yoo, 2011). Among the five measures, the J is used as a
representative measure for Remark 3.

Remark 4. An optimal threshold can also be determined by satisfying the following:

max
{
cos2 θ1 × cos2 θ2

}
.

Since the product of cos2 θ1 and cos2 θ2 is equivalent to the product of the true positive and true
negative ratios: max{Fd(x) × (1 − Fn(x))}, the maximization this product is used to find an optimal
threshold based on the accuracy area (AA) accuracy measure.

Remark 5. Another optimal threshold could be found by satisfying the following:

min
∣∣∣cos2 θ1 − cos2 θ2

∣∣∣ .
When the absolute value of the difference between cos2 θ1 and cos2 θ2 is zero on the TPR-TNR plot, it
can be said that θ1 = θ2, so that the TPR is supposed to be equal to the TNR: Fd(x) = 1−Fn(x). Hence,
the minimization of this absolute value is used to find an optimal threshold based on the symmetric
point (SP) accuracy measure.

Note that when the heights of two points A and B on the TPR-TNR plot are the same, i.e., Fd(x)(1−
Fd(x)) = Fn(x)(1 − Fn(x)), then this condition could also be equivalent to the SP, which also satisfies
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(a) µn = 1, σn = 0.5 (b) µn = 1, σn = 2
Figure 2: Optimal thresholds on TPR-TNR plots.

Remark 5. Therefore, we conclude that various optimal thresholds could be determined using θ1 and
θ2 on the TPR-TNR plot.

Let points A1 and B1 correspond to the J, points A2 and B2 correspond to the AA, and points
A3 and B3 correspond to the SP on the TPR-TNR plot. The distribution function of a disease state is
assumed as the standard normal distribution N(0, 1), and two kinds of distributions of a non-disease
state are considered: one is µn = 1, σn = 0.5 and the other is µn = 1, σn = 2. For the first case, it is
obtained that optimal thresholds corresponding to the Youden, AA and SP are xJ = 0.38, xAA = 0.46,
xSP = 0.66, respectively (xJ < xAA < xSP). Then from Figure 2(a), the horizontal coordinates of points
A and B are satisfying that B1 < B2 < B3 and A1 < A2 < A3, since θ1 and the TNR decrease whereas
θ2 and the TPR increase. For the second case in Figure 2(b), it is obtained that optimal thresholds
corresponding to the Youden, AA and SP are xJ = 1.18, xAA = 0.79, xSP = 0.33, respectively,
(xJ > xAA > xSP). Then, the horizontal coordinates of points A and B on Figure 2(b) are satisfying
that B3 < B2 < B1 and A3 < A2 < A1, since θ1 and the TNR increase whereas θ2 and the TPR
decrease. Moreover, the TPRs for the first case are smaller than those of the second case but the TNRs
for the first case are larger than those of the second case based on three kinds of accuracy measures.
It if found that the points A for the second case in Figure 2(b) locate nearer to (1, 0) than the first case
in Figure 2(a), and the points B for the first case in Figure 2(a) locate closer to (0, 0) than the first case
in Figure 2(b).

4. Properties of TPR-TNR plot

In order to examine the properties of the TPR-TNR plot, we consider the normal distribution func-
tions with various means and variances to understand the TPR-TNR plot’s characteristics. For each
distribution function, the confusion matrix is obtained for the optimal threshold based on the J among
the accuracy measures discussed in Section 3. The TPR-TNR plots corresponding these confusion
matrices are explored.

We obtain that the conditional cumulative distribution functions given a disease state Fd(x) follows
a standard normal distribution N(0, 12) and the conditional cumulative distribution functions given a
non-disease state Fn(x) follows normal distributions N(µn, σ

2) with µn = 1, 2 and σn = 0.5, 1, 1.5.
For the four types of Fn(x) in Table 3, the optimal threshold and θ1, θ2 are calculated based on the J.
Figure 3 shows the four TPR-TNR plots with these values.

Using Figure 3, we obtain that when µn is greater than µd with fixed σd = σn, the two angles θ1
and θ2 decrease, leading to an increase in the TPR and TNR. Therefore, the two points A and B spread
farther apart on half upper-circle when µn is greater than µd (see Figure 3(a) and (b)). Moreover, when
σn = 1.5 is greater than σd with µd = µn, θ1 decreases and θ2 increases, leading to an increase and
decrease in the TPR and TNR, respectively. Therefore, the two points A and B are located on the right
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Table 3: TPR and TNR for various distributions

Optimal threshold TPR TNR θ1 θ2
(a) µn = 1, σn = 1 0.5000 0.6915 0.6915 33.7425˚ 33.7425˚
(b) µn = 2, σn = 1 1.0000 0.8413 0.8413 23.4729˚ 23.4729˚
(c) µn = 1, σn = 1.5 0.9028 0.8167 0.5258 25.3496˚ 43.5199˚
(d) µn = 1, σn = 0.5 0.3812 0.6485 0.8921 36.3629˚ 19.1795˚

(a) µn = 1, σn = 1 (b) µn = 2, σn = 1

(c) µn = 1, σn = 1.5 (d) µn = 1, σn = 0.5

Figure 3: TPR-TNR plots.

of the half upper-circle when σn is greater than σd (see Figure 3(a) and (c)). From Figure 3(d), we
have that when σn = 0.5 is less than σd with µd = µn, values of the θ1 and θ2 are in contrast to the
case of Figure 3(c) leading to a decrease and increase in the TPR and TNR, respectively. Therefore,
the two points A and B are located on the left of the half upper-circle (see Figure 3(c) and (d)).

5. Real data example

A credit evaluation data was collected from a Korean domestic K bank in June 2018. This sample of
size 65,455 contains two random variables: one means the risk score rank, which is a score variable
with 20 grades, and the other variable divides each sample into three stages. Hong and Choi (2020)
used the second and third stages of size q = 6,951(C = 1) and q = 1,191(C = 0), respectively. These
two stages are classified into non-default and default groups. Hong and Choi (2020) obtained the same
2 × 2 confusion matrix in Table 4 based on an optimal threshold.

From Table 4, we obtain that TPR = sensitivity = 0.9501 and TNR = specificity = 0.8371.
These values are almost close to 1.0, which means that the accuracy and performance of the diagnosis
are very superior. Figure 4 shows the TPR-TNR plot for Table 4. From Figure 4, we obtain that
θ1 = 12.9106◦ is smaller than θ2 = 23.8031◦ since the TPR has larger value than the TNR.
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Table 4: Confusion matrix for an empirical data

Predicted
Disease Non-Disease

Actual Disease 6604 347
Non-Disease 194 997

Figure 4: TPR-TNR plot.

6. Conclusions

Based on the well-known confusion matrix, two equations whose summation is one are obtained in
(2.1). Two right-angled triangles could be imagined using these two equations. These two triangles are
drawn on an upper half-circle. The rightmost and leftmost segments of two right-angled triangles are
represented as functions of the FNR and FPR, respectively. Since the length of the horizontal line is 1,
then θ1 and θ2 corresponding to the right and left right-angled triangles, respectively, can be defined as
cos2 θ1 = TPR, cos2 θ2 = TNR. It is found that the TPR, TNR, FPR, and FNR defined in the confusion
matrix can be geometrically explained with the TPR-TNR plot proposed in this study.

Points A and B on the TPR-TNR plot denote coordinates in which an upper half-circle meets the
right triangle and left triangle, respectively. It is found that point A precedes point B. Moreover, the
farther point A is away from point B, the easier it is to classify the two data sets. Hence, the distance
between points A and B plays an important role in determining discriminant power.

Since the TPR and TNR are defined as functions of θ1 and θ2, some optimal thresholds could be
found to satisfy three strategies: the first is to maximize the summation of cos2 θ1 and cos2 θ2, the
second is to maximize the product of cos2 θ1 and cos2 θ2, and the last is to minimize the absolute
value of the difference between cos2 θ1 and cos2 θ2. It is found that these methods discussed three
Remarks in Section 3 with similar behavior of accuracy measures such as the Youden index, MVD,
SSS, true rate, amended closet-to-(0, 1), Kolmogorov–Smirnov statistic, maximizing the AA, and SP.
Therefore, we might conclude that various optimal thresholds could be determined using θ1 and θ2 on
the TPR-TNR plot.

Various normal distribution functions are considered to derive characteristics of the TPR-TNR
plot. We expressed an optimal threshold for each distribution function corresponding TPR-TNR plot
geometrically. Hence, the properties of the two angles θ1 and θ2 could be determined using these
corresponding TPR-TNR plots.

The TPR-TNR plot describes geometrically various classification rates such as the TPR, FNR,
FPR and TNR when a threshold is given. Also this plot can show the variations of these rates as the
threshold changes like Figure 2. We might say that this plot can evaluate the classification model
similarly to the well known ROC curve using comparison angles and two points in two right angled
triangles. Therefore, the TPR-TNR plot proposed in this study can be applied in evaluating classifica-
tion models when make use the ROC curve together practically and visually.
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