
Communications for Statistical Applications and Methods
2021, Vol. 28, No. 2, 205–215

https://doi.org/10.29220/CSAM.2021.28.2.205
Print ISSN 2287-7843 / Online ISSN 2383-4757

Iterative projection of sliced inverse regression with fused
approach

Hyoseon Hana, Youyoung Choa, Jae Keun Yoo1,a

aDepartment of Statistics, Ewha Womans University, Korea

Abstract
Sufficient dimension reduction is useful dimension reduction tool in regression, and sliced inverse regression

(Li, 1991) is one of the most popular sufficient dimension reduction methodologies. In spite of its popularity,
it is known to be sensitive to the number of slices. To overcome this shortcoming, the so-called fused sliced
inverse regression is proposed by Cook and Zhang (2014). Unfortunately, the two existing methods do not have
the direction application to large p-small n regression, in which the dimension reduction is desperately needed.
In this paper, we newly propose seeded sliced inverse regression and seeded fused sliced inverse regression
to overcome this deficit by adopting iterative projection approach (Cook et al., 2007). Numerical studies are
presented to study their asymptotic estimation behaviors, and real data analysis confirms their practical usefulness
in high-dimensional data analysis.

Keywords: central subspace, fused reduction, inverse regression, iterative projection, large p-
small n regression, sufficient dimension reduction

1. Introduction

In modern society, data is collected and stored through various channels such as mobile, table, and
IoT, and big data analysis using this data is used in many ways. However, as the amount of data
increases, the curse of dimensionality is one of the inevitable problems. As the dimensions increase,
the space of data to be explained increases exponentially. This means that more data are needed to
explain, but, consequently, the explanatory power is reduced. Therefore, in order to overcome this
problem, we intend to reduce the dimension without loss of information.

Sufficient dimension reduction (SDR) provides effective tools for the problem in regression of
Y ∈ R1|X ∈ Rp. The SDR replaces the p-dimensional predictors X with its lower-dimensional
projection ηTX without loss of information on Y ∈ R1|X ∈ Rp, where p ≥ 2 and η ∈ Rp×d with d ≤ p.
This is equivalently expressed as follows:

Y X|ηTX, (1.1)

where stands for statistical independence. Naturally, SDR pursues the estimation of η to satisfy
(1.1) and to have the minimal dimension. The subspace spanned by the columns of such η is called the
central subspace SY |X. Hereafter, η and d will represent an orthonormal basis matrix and the structural
dimension of SY |X. And, the d-dimensional linear projection ηTX is called sufficient predictors.
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One of the popular SDR methods to estimate SY |X is sliced inverse regression (SIR) (Li, 1991).
The method requires so-called linearity condition such that E(X|ηTX) is linear in ηTX. To implement
SIR, a categorization of the response Y , called slicing is crucial. Intuitively, the sample performance
of SIR essentially depends on the choice of the slices, that is, the number of categories of Y . That
is, different choices of the numbers of slices cause non-consistent structural dimension and basis
estimation of SY |X. However, there is no recommendation for adequate choices of the number of
slices. This is always critical to SIR despite its popularity.

Recently, Cook and Zhang (2014) proposed fused sliced inverse regression (FSIR) to overcome
this deficit. The FSIR constructs a new kernel matrix by fusing kernel matrices constructed from var-
ious choices of numbers of slices. This new kernel matrix balances the different information acquired
from non-nested slices and the similar information acquired from nested slices. We will discuss this
nestness of slices in later section. This balancing makes FSIR more robust to the number of slices
than SIR, and increase the estimation accuracy of SY |X.

Unfortunately, FSIR requires the inverse of the sample covariance matrix of predictors, and it is
not invertible with p ≥ n. This indicates that FSIR does not have a direct application to large p-small
n regression, which is quite common these days. Therefore, the extension of FISR to large p-small n
regression must be done in this big data era. For this, we will take a route of an iterative projection
approach suggested by Cook et al. (2007). Upto date, there is no iterative projection approach for
SIR, so the paper newly provides so-called seeded SIR. Based on this seeded SIR, we finally propose
seeded FSIR. This is the primary purpose of the paper.

The organization of the paper is as follows. In Section 2, fused sliced inverse regression and
nestness are introduced. Section 3 is devoted to developing seeded sliced inverse regression and
seeded fused sliced inverse regression. In Section 4, numerical studies and real data example are
presented. We summarize our work in Section 5.

2. Sliced and fused sliced inverse regressions and nestness

2.1. Sliced and fused sliced inverse regressions

As discussed in Introduction, the fused sliced inverse regression (FSIR) (Cook and Zhang, 2014) is
based on sliced inverse regression (SIR) (Li, 1991). Letting Σ = cov(X) and Z = Σ−1/2(X − E(X))
with Σ−1/2Σ−1/2 = Σ−1, we have SY |X = Σ−1/2SY |Z according to Yoo (2016a).

In Li (1991), it is shown that E(Z|Y) ∈ SZ|Y under certain condition, which is not an issue here.
In other words, a subspace spanned by E(Z|Y = y) varying the values of y is a subspace of SZ|Y . That
is, once E(Z|Y) is restored, we can, at least partially, capture SZ|Y . In SDR context, it is normally
assumed that S(E(Z|Y)) = SZ|Y . For more about the two conditions mentioned here, readers are
recommended to read Yoo (2016a, 2016b). Hereafter without mentioning clearly, we assume that
S(E(Z|Y)) = SY |Z.

Since there is no parametric assumption so far, it is crucial to estimate E(Z|Y) non-parametically.
Li (1991) suggests a simple procedure, which is a categorization of Y . This categorization of Y and
the category are called slicing and slice, respectively. Once the original Y is categorized into h groups,
E(Z|Y = y) can be estimated by the sample mean within each group.

Define K = ((n1/n)Z̄1, (n2/n)Z̄2, . . . , (nh/n)Z̄h), where Z̄k = (1/nk)
∑

i∈Hk
Zi, Hk is the kth slice,

and nk stands for the sample size of the kth slice. Then, spectral-decompose MSIR = KKT such that

MSIR =

p∑
i=1

λiγiγ
T
i ,
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where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Then, a subspace spanned by the first d-largest eigenvectors pre-multiplied by Σ−1/2, that is,
Σ−1/2(γ1, . . . ,γd), is the estimate of SY |X. The estimation approach of SY |X through MSIR is called
sliced inverse regression (SIR).

As the name of the method indicating, the crucial step of practical implementation of SIR is
slicing. That is, its estimation performance clearly depends on the number of slices, but there is no
thumb rule for its proper selection.

To overcome this deficiency of SIR, Cook and Zhang (2014) propose a fused approach. Let Kg be
K constructed with g slices. Then, we construct the following non-decreasing sequence:

K(g) = (K2,K3, . . . ,Kg) for g = 3, 4, . . . , h.

We rule g = 2 out in K(g) because K(2) = K2.

Since the columns of each Kg spans SY |Z, those of K(g) also span SY |Z. This directly implies that
K(g) are fully informative to SY |Z, so MFSIR = K(g)KT

(g) becomes another kernel matrix to estimate
SY |Z. The estimation of SY |X thru MFSIR is called fused sliced inverse regression (FSIR). Cook and
Zhing (2014) shows that FSIR is more robust to the number of slices and has more accurate estimation
of SY |X than SIR.

In the implementation of SIR and FSIR, the unknown population quantities are replaced with their
usual moment estimators.

2.2. Nestness

This subsection is devoted to explain intuitively why FSIR is, at least, robust to the numbers of slices.
In SIR, the slicing is usually done for each slice to have equal number of observations, which induce
that the slicing results are nested for multiples of prime numbers. For example, suppose that one
categorizes Y into two, four and six groups. The four and six groups completely and exhaustively fall
into the two groups. If another one categorizes Y into three, six and nine groups, then the six and nine
groups again completely and exhaustively fall into the three group. This property of slicing is called
nestness. Because of the nestness of the slicing, fusing kernel matrices of SIR resulted from various
numbers of slices combine heterogeneous information acquired by the different prime numbers of
slices and homogeneous information provided by the same prime numbers of slices. The heteroge-
neous information relieves sensitiveness to the numbers of slices and the homogeneous information
increases the estimation accuracy.

3. Seeded sliced and seeded fused sliced inverse regressions

In both SIR and FSIR, practically, the inversion of the sample covariance matrix of X is commonly
required. However, if the sample size n is less than the number of predictors p, the inversion is not
possible. Therefore, in the so-called large p-small n regression, in which dimension reduction of X is
on urgent demand, the application of SIR and FSIR is not possible.

To overcome this deficit, we adopt seeded dimension reduction suggested by Cook et al. (2007).
Basic idea of the seeded dimension reduction is iterative projection of seed matrix, which is informa-
tive to ΣSY |X, onto Σ.
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Then, the following relation should be noted:

E(Z|Y) ∈ SY |Z ⇔ Σ
− 1

2 E(Z|Y) ∈ Σ−
1
2SY |Z

⇔ Σ−
1
2 E(Z|Y) ∈ SY |X

⇔ Σ−1E(X|Y) ∈ SY |X

⇔ E(X|Y) ∈ ΣSY |X.

By the last equivalence of E(X|Y) ∈ ΣSY |X, E(X|Y) can be a seed matrix. This directly implies that
the following two matrices of Kx

g and Kx
(g) also can be seed matrices:

Kx
g ∈ Rp×g =

(
X̄1, . . . , X̄g

)
and Kx

(g) ∈ R
p×(0.5g(g+1)−1) =

(
Kx

2,K
x
3, . . . ,K

x
g

)
,

where X̄k = (1/nk)
∑

i∈Hk
Xi.

Next, by projecting Kx
g and Kx

(g) iteratively onto Σ, the following two quantities are constructed:

Ru ∈ Rp×ug =
(
Kx

g, ΣKx
g, Σ

2Kx
g, . . . , Σ

u−1Kx
g

)
RF

u ∈ Rp×u(0.5g(g+1)−1) =
(
Kx

(g), ΣKx
(g), Σ

2Kx
(g), . . . ,Σ

u−1Kx
(g)

)
.

Then, finally, the following two matrices are computed from Ru and RF
u :

Bu ∈ Rp×g = Ru

(
RT

uΣRu

)−1
RT

u Kx
g

BF
u ∈ Rp×(0.5g(g+1)−1) = RF

u

(
RF

u
T
ΣRF

u

)−1
RF

u
TKx

(g).

According to Cook et al. (2007), the columns of both Bu and BF
u span SY |X.

Now, we need to discuss two issues in the estimation of Bu and BF
u . The first one is the selection of

u. The termination index u should be carefully chosen, so that Ru and RF
u are sufficiently informative

to SY |X and both (RT
uΣRu) and (RFT

u ΣRF
u) are invertible. Defining that ∆u = Bu+1 − Bu, Cook at al.

(2007) suggest to utilize n trace(∆T
uΣ∆u). Accordingly, n trace(∆F

u
T
Σ∆F

u) is defined for RF
u .

One simple way is to choose the smallest u to make n trace(∆T
uΣ∆u) < e, where the cut-off value

of e is user-selected. In numerical studies and real data analysis, we set e = 0.01.
The second issue is for inverting RF

u
T
ΣRF

u . Actually, the dimension of RF
u

T
ΣRF

u is u(0.5g(g + 1) −
1) × u(0.5g(g + 1) − 1). For example, setting n = 100, g = 6 and u = 5, it becomes a 100 by 100
matrix. Since n = 100, the inversion of RF

u
T
ΣRF

u is not plausible. Therefore, we need to fix this issue
in a practical way. The main reason that RF

u
T
ΣRF

u has high dimension is placed onto fusing many Kx
gs.

In practice, the seed matrix Kx
(g) would have much noise in high-dimensional predictors. Therefore, it

should be recommended to eliminate unnecessary noise before constructing Kx
(g) from Kgs.

Here, instead of using K(g) as seed matrix, we propose to use the collection of the first eigenvector
of Kx

g as a seed matrix for FSIR. Then, its dimension is reduced to p×(g−1) from p×(0.5g(g+1)−1).
This replacement does not always win against the original Kx

(g), but it should be a realistic, efficient
and effective alternative to the inversion issue faced in high-dimensional predictors.

Also, to compute the required matrix inversion in seeded dimension reduction, we also considers
further reduction of the seed matrices. The Kx

g for SIR and the collection of the first eigenvector of
Kx

g for FISR are replaced with their q largest eigenvectors based on the cumulative proportions of
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the sum of their eigenvalues. Although one can use various proportions, we can use 99% cumulative
proportion.

The following algorithm summarizes our proposed seeded dimension reduction for SIR and FISR.

1. Construct Kx
g and the collection Γx

• of the first eigenvectors of Kx
g for g = 2, . . . , h.

2. Let νSIR be a set of the eigenvectors of Kx
g corresponding to its largest eigenvalues, whose sum

accounts for, at least, 99% of the sum of all the eigenvalues. Similarly, we define νFSIR as a set of
the eigenvectors of Γx

• corresponding to its largest eigenvalues, whose sum accounts for, at least,
99% of the sum of all the eigenvalues.

3. With νSIR and νFSIR as seed matrices, compute Ru = (νSIR,ΣνSIR,Σ
2νSIR, . . . ,Σ

u−1νSIR) and RF
u =

(νFSIR,ΣνFSIR,Σ
2νFSIR, . . . ,Σ

u−1νFSIR).

4. Construct Bu = Ru(RT
uΣRu)−1RT

uνSIR and BF
u = RF

u(RF
u

T
ΣRF

u)−1RF
u

T
νFSIR. In the computation of

Bu and BF
u , the iterative projections are terminated when both n trace(∆T

uΣ∆u) and n trace(∆F
u

T
Σ∆F

u)
are less than 0.01.

5. The columns of Bu and BF
u spans SY |X.

We call the estimation of SY |X through Bu and BF
u constructed through the above algorithm seeded

sliced (sSIR) and seeded (sFSIR), respectively.
In samples, all population quantities are replaced with their usual moment estimators.

4. Numerical studies and data analysis

4.1. Numerical studies

For all simulation studies, the sample sizes were 100 with 500 iterations per model. The structural di-
mension of SY |X was one for the models under consideration. To measure how well SY |X is estimated,
the absolute value |r| of the Pearson correlation coefficient between ηTX and η̂TX was computed. As
a summary, boxplots of |r| obtained from seeded sliced inverse regression and seeded fused sliced
inverse regression were reported along with lining its means and median against various numbers of
slices.

To generate variables, we define βi, i = 1, 2, 3 as follows: β1 = (p−1/2, p−1/2, . . . , p−1/2)T; β2
is defined as its first and last of 20% of elements equal to (0.4p)−1/2 and all other elements ze-
ros; β3 = (2−1/2, 0, . . . , 0, 21/2). Also, two p × p covariance matrix Σ1 and Σ2 are defined: Σ1 =

(2/3) diag(2, . . . , 2, 1, . . . , 1) with equal multiplicity between 1 and 2; Σ2 = (2/p+1) diag(p, p−1, p−
2, . . . , 1).

Then, we considered two simulated models in Cook et al. (2007):

• Model 1: Y = βT
i X + 0.3ε;

• Model 2: Y = βT
i X + (βT

i X)3/10 + 0.3ε,

where X ∼ MN(0,Σ j), j = 1, 2 and ε ∼ N(0, 1) X.

Following Cook et al. (2007), the combination of (βi,Σ j) was set to (β1,Σ1), (β2,Σ1) and (β3,Σ2)
for p = 10 and p = 500. So, each model has totally 6 scenarios.

The stopping rule for the iterative projection and choices of the seeded matrix for sSIR and sFSIR
are directly followed in the algorithm in Section 3.
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Figure 1: Side-by-side boxplots of |r| for Model 1 with p = 10.

With p = 10 there is no notable difference between sSIR and sFSIR for any scenario of both
models, which is summarized in Figures 1 and 3. Figures 2 and 4 show that both sSIR and sFSIR
provides good estimation of SY |X for high dimension predictors with p = 500. According to Figures 2
and 4, it is observed that sFSIR is consistent to the numbers of slices and often yields better estimation
results than sSIR, while sSIR is more sensitive to the number of slices than sFSIR and the estimation
accuracy of sSIR gets worse with larger numbers of slices. The numerical studies confirm both sSIR
and sFSIR are well-estimate SY |X and that sFSIR is more robust to the numbers of slices than sSIR.
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Figure 2: Side-by-side boxplots of |r| for Model 1 with p = 500.

4.2. Data analysis: Near-infrared spectroscopy of biscuit doughs data

For real data application, near-infrared spectroscopy of biscuit doughs data (NIR) (Brown et al., 2001),
named as cookie in ppls package in R is illustrated. The measurements of the composition of biscuit
dough pieces from near-infrared spectroscopy are contained in the data. It is known that near-infrared
spectroscopy is one of most preferred tools to analyze constitutions of various materials such as food
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Figure 3: Side-by-side boxplots of |r| for Model 2 with p = 10.

and drink, pharmaceutical products, and petrochemicals. The data consist of measurements of the
composition of biscuit dough pieces and water. A regression analysis of the percentages of water
(Y) in dough on the composition of biscuit dough pieces (X) were considered. Predictors of the
composition of biscuit dough pieces were measured from 1100 to 2498 nanometers (nm) in steps of 2
nm, so there are total 700 points. Brown et al. (2001), however, suggests removing the first 140 and
the last 49 wavelengths because of lack of useful information and to increase the steps from 2 to 4 nm.
As results, a wavelength ranging from 1380 to 2400 nm was adopted, and hence there are 256 points,
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Figure 4: Side-by-side boxplots of |r| for Model 2 with p = 500.

which is the dimension of predictors. Total 72 observations in the data were divided into two groups
of 40 training and 32 test sets, and the 23rd and 21st observations in the training test sets, respectively,
were eliminated as outliers before analysis. Let Xtrain ∈ R256×40 and Xtest ∈ R256×32 stand for the train
and test sets, respectively. Accordingly, we define Ytrain and Ytest. The analysis scheme is as follows.
First, the dimension of X is reduced by sSIR and sFSIR with 3, 6, and 9 slices with the training set.
The dimension reduced predictors will be denoted as B̂T

trainX. Following Brown et al. (2001), with the
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reduced predictors B̂T
trainXtrain, the following linear regression is fitted:

Ytrain = α + βT
(
B̂T

trainXtrain

)
+ ε.

Then the model is evaluated by the test set Xtest through B̂T
trainXtest. Mean squared errors of predictions

on the test set are computed for the comparison, which is reported in Table 1.
First, we compare the fitted dimension reduction predictors with the application of sSIR and sFSIR

with 3, 6 and 9 slices, which is summarized in Figure 5. According to Figure 5, sFSIR provides the
essentially same reduction results regardless of the number of slices, and they are also quite close to
ones from sSIR with 3 and 6 slices. All the five cases reduce 256 dimension to 1 dimension. However,
sSIR with 9 slices report two-dimensional reduction, and its first direction is even different from all
the other five. This relationship does not guarantee the results from sFSIR and sSIR with 3 and 6
slices is better than sSIR with 9 slices. To have the insight for this, we compare the computed mean
squared error of prediction in Table 1.

Table 1 shows that the mean squared errors of the prediction are somewhat different, although the
three results from sFSIR and those of sSIR with 3 and 6 slices are close to each other. The best one
should be the application of sFSIR with 9 slices, while the worst one is sSIR with 3 slices. And, the
mean squared errors of prediction from sFSIR are less variable than those from sSIR. This confirms
that sFSIR is more robust to the number of slices than sSIR in practice.
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Table 1: Mean squared errors of prediction from sSIR and sFSIR with 3, 6, and 9 slices: sSIR #, sSIR with #
slices; sFSIR#, sFSIR with # slices

sSIR3 sSIR6 sSIR9 sFSIR3 sFSIR6 sFSIR9
0.378 0.245 0.340 0.261 0.213 0.198

5. Discussion

Sufficient dimension reduction (SDR) is useful dimension reduction tool in regression. One of the
most popular SDR method should be sliced inverse regression (Li, 1991), but it is known to be sen-
sitive to the number of slices. To overcome this deficit, Cook and Zhang (2014) proposed a fused
approach. Both existing methods do dimension reduction, but, ironically, they do not have the di-
rection application to large p-small n regression, in which the dimension reduction is desperately
needed.

By adopting seeded dimension reduction approach (Cook et al., 2007), we newly propose seeded
sliced inverse regression and seeded fused sliced inverse regression to improve the two existing SDR
methods. Numerical studies confirm that both seeded sliced and fused sliced inverse regressions are
effective in dimension reduction for large p-small n regression. Also, it is observed that seeded fused
sliced inverse regression is more robust to the number of slices than seeded sliced inverse regression.
With real data analysis, we observe the same results, which prove their practical usefulness in high-
dimensional data analysis.

As further studies, the dimension estimation of seeded sliced and fused sliced inverse regression,
adopting information criteria proposed by Zhu et al. (2006). This direction is under progress.
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