DOI QR코드

DOI QR Code

Comparison between the biomass and habitat suitability index(HSI) of marine forest forming seaweeds

바다숲 조성 해조류의 생물량과 서식지적합지수 비교

  • Hwang, Sung Il (Underwater Ecology Institute) ;
  • Shin, Bong Kyun (Underwater Ecology Institute) ;
  • Kwak, Yong Sung (Faculty of Biological Science and Institute of Basic Natural Sciences, Wonkwang University) ;
  • Choi, Han Gil (Faculty of Biological Science and Institute of Basic Natural Sciences, Wonkwang University)
  • 황성일 ((주)수중생태기술연구소) ;
  • 신봉균 ((주)수중생태기술연구소) ;
  • 곽용성 (원광대학교 생명과학부) ;
  • 최한길 (원광대학교 생명과학부)
  • Received : 2021.02.15
  • Accepted : 2021.03.03
  • Published : 2021.03.31

Abstract

The seasonal and vertical biomass of marine forest seaweeds were examined to select a suitable species at 12 sites of the South Sea in Korea between 2018 and 2019. The Habitat Suitability Index (HSI) was also calculated in terms of biomass for six species (three kelp and three Sargassum species). A total of 16 marine forest-forming species including four kelp and 12 Sargassum species were observed at the 12 sites. The average annual seaweed biomass by season and depth ranged from 843.73-2,925.85 g wet wt. m-2 at the eastern South Sea and from 343.87-4,580.10 g wet wt. m-2 at the western South Sea. In the kelp species, the Ecklonia cava biomass was predominant, followed by E. stolonifera. The macroalgal species with the greatest biomass was Sargassum macrocarpum, followed by S. horneri. The HSI values of E. stolonifera were between 0.76-1.0 at eight sites and those of E. cava were 0.58-0.92 at four sites, indicating that E. stolonifera was more suitable than E. cava. In the HSI values of the Sargassum species, S. horneri ranged between 0.84-1.0 at all 12 sites and the S. macrocarpum values were between 0.68-0.99. The results indicate that E. cava and S. macrocarpum were the most suitable for the marine forest construction in terms of the seaweed biomass, and E. stolonifera and S. horneri in terms of the HSI values. Thus, we suggest that seaweed biomass and HSI values should be considered when choosing suitable forest-forming species.

남해안의 바다숲을 구성하는 종을 확인하고 바다숲 조성에 적합한 종을 파악하기 위하여 남해안 12개 정점에서 계절별로 4개 수심에서 2018년~2019년에 걸쳐서 해조류의 생물량을 조사하였다. 해조류 생물량을 근거로 켈프종 3종과 모자반류 3종에 대해서 서식지적합지수를 계산하여 생물량과 비교하였다. 본 연구에서 바다숲을 구성하는 종은 켈프종 4종과 모자반류 12종으로 총 16종이 관찰되었다. 정점별로 해조류의 평균 생물량(계절별, 수심별 포함)은 남해 동부에서 843.73~2,925.85 g wet wt. m-2였고 남해 서부에서 343.87~4,580.10 g wet wt. m-2였다. 모든 정점에서 생물량 기준으로 볼 때, 켈프종에서는 감태가 가장 우점하였고 다음으로 곰피였으며, 모자반류에서는 큰열매모자반이 1위였고 괭생이모자반이 2위로 나타났다. 서식지지수는 곰피가 8개 정점에서 0.76~1.00이었으며, 감태는 4개 정점에서 0.58~0.92의 범위를 보임으로써 곰피가 감태에 비해 적합한 종으로 나타났다. 모자반류의 서식지적합지수는 괭생이모자반이 12개 모든 정점에서 0.84~1.00의 값을, 그리고 큰열매모자반이 0.68~0.99을 보였다. 본 연구의 결과 바다숲 조성에 적합한 켈프종과 모자반종은 생물량과 서식지적합지수와 약간의 차이를 보였는데, 생물량으로는 감태와 큰열매모자반이, 서식지적합지수로 보면, 곰피와 괭생이모자반이 가장 적합한 것으로 나타났다. 따라서, 본 연구를 통해서 바다숲 조성을 위한 적합종의 선택을 위해서는 해조류의 생물량과 서식지적합지수를 모두 고려해야 할 것으로 사료되며, 서식지적합지수 계산을 위해서는 향후 더 많은 연구가 필요한 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 한국연구재단의 이공분야기초연구사업(NRF-2019R1F1A1062459)의 지원을 받아서 수행되었습니다.

References

  1. Akita S, H Yamada, M Ito, M Kobayashi and D Fujita. 2014. Phenology of annual kelp Eckloniopsis (Phaeophyceae, Laminariales) forest on a Diadema barren in Uchiura Bay, Central Pacific Coast of Honshu, Japan. J. Appl. Phycol. 26:1141-1148. https://doi.org/10.1007/s10811-013-0213-2
  2. Arakawa H. 2005. Lethal effects caused by suspended particles and sediment load on zoospores and gametophytes of the brown alga Eisenia bicyclis. Fish. Sci. 71:133-140. https://doi.org/10.1111/j.1444-2906.2005.00940.x
  3. Choi DM, YW Ko, RS Kang and JH Kim. 2015. Morphological and genetic variability among Ecklonia cava (Laminariales, Phaeophyceae) populations in Korea. Algae 30:89-101. https://doi.org/10.4490/algae.2015.30.2.089
  4. Choi HG, DV Jeon, SK Park and X Gao. 2019. Physiological differences in the growth and maturation of Eisenia bicyclis and Ecklonia cava gametophytes in Korea. J. Ocean. Limnol. 37:657-664. https://doi.org/10.1007/s00343-019-8074-4
  5. Choi SK, YH Kang and SR Park. 2020. Growth responses of kelp species Ecklonia cava to different temperatures and nitrogen sources. Korean J. Environ. Biol. 38:404-415. https://doi.org/10.11626/KJEB.2020.38.3.404
  6. Devinny JS and LA Volse. 1978. Effects of sediments on the development of Macrocystis pyrifera gametophytes. Mar. Biol. 48:343-348. https://doi.org/10.1007/BF00391638
  7. FIRA. 2015a. Survey of Barren Ground Areas using Hyper-Spectral Image Method along the Coasts of Eastern South Sea. Korea Fisheries Resources Agency. Busan, Korea. p. 264.
  8. FIRA. 2015b. Survey of Barren Ground Areas using Hyper-Spectral Image Method along the Coasts of South Sea. Korea Fisheries Resources Agency. Busan, Korea. p. 169.
  9. FIRA. 2017a. Cause and Solution of Barren Grounds. Current State of Barren Grounds in Korean Coastal Area. Korea Fisheries Resources Agency. Busan, Korea. p. 67.
  10. FIRA. 2017b. Development and Production of New Seaweed Species for Marine Forest Construction. Korea Fisheries Resources Agency. Busan, Korea. p. 166.
  11. Gao X, HG Choi, SK Park, JH Kim, OH Yu and KW Nam. 2019. Sporophytic photosynthesis and gametophytic growth of the kelp Ecklonia stolonifera affected by ocean acidification and warming. Aquac. Res. 50:856-861. https://doi.org/10.1111/are.13957
  12. Hwang EK, JM Baek and CS Park. 2009. The mass cultivation of Ecklonia stolonifera Okamura as a summer feed for the abalone industry in Korea. J. Appl. Phycol. 21:585-590. https://doi.org/10.1007/s10811-009-9402-4
  13. Hwang EK, HG Choi and JK Kim. 2020. Seaweed resources of Korea. Bot. Mar. 63:395-405. https://doi.org/10.1515/bot-2020-0007
  14. Kang RS, JG Je and CH Sohn. 1993. Summer algal communities in the rocky shore of the South Sea of Korea. II. Subtidal communities. Bull. Korean Fish. Soc. 26:182-197.
  15. Kang RS, KS Won, KP Hong and JM Kim. 2001. Population studies on the kelp Ecklonia cava and Eisenia bicyclis in Dokdo, Korea. Algae 16:209-215.
  16. Kang RS, HS Park, KS Won, JM Kim and C Levings. 2005. Competition as a determinant of the upper limit of subtidal kelp Ecklonia stolonifera Okamura in the southern coast of Korea. J. Exp. Mar. Biol. Ecol. 314:41-52. https://doi.org/10.1016/j.jembe.2004.08.019
  17. Kang SK. 2018. Economic value of marine forests in Korea. J. Fish. Bus. Adm. 49:17-35. https://doi.org/10.12939/FBA.2018.49.1.017
  18. Kwak CW, EY Chung, TY Kim, SH Son, KY Park, YS Kim and HG, Choi. 2014. Comparison of seaweed transplantation method to reduce grazing pressure by sea urchin. Korean J. Nat. Conserv. 8:32-38. https://doi.org/10.11624/KJNC.2014.8.1.032
  19. Kim YD, JP Hong, HI Song, CY Jeon, SK Kim, YS Son, HK Han, DS Kim, JH Kim, MR Kim, YG Gong and DK Kim. 2007. Growth and maturation of Laminaria japonica transplanted for seaforest construction on barren ground. J. Korean Fish. Aquat. Sci. 40:323-331.
  20. Kim YD, JM Shim, MS Park, JP Hong, HI Yoo, BH Min, HJ Jin, C Yarish and JK Kim. 2013. Size determination of Ecklonia cava for successful transplantation onto artificial seaweed reef. Algae 28:365-369. https://doi.org/10.4490/algae.2013.28.4.365
  21. Lindstrom SC. 2009. The biogeography of seaweeds in southeast Alaska. J. Giogeogr. 36:401-409.
  22. Millar A. 2011. Macroalgae. New South Wales Department of Primary Industries. Sydney. http://www.dpi.nsw.gov.au/_data/assets/pdf_file/0009/378774/Macroalgae-Primefact-947.pdf.
  23. Oh TG, YC Kim, YS Yang, CG Kim and MO Lee. 2010. A suitability selection for marine afforestation using habitat evaluation procedure. J. Korean Soc. Mar. Eng. 34:369-380.
  24. Park SK, JR Lee, JS Heo, DS An, HP Lee and HG Choi. 2014. Marine algal flora and ecological role of Eisenia bicyclis in Dokdo, East Sea, Korea. Korean J. Environ. Ecol. 28:613-626. https://doi.org/10.13047/KJEE.2014.28.6.613
  25. Seki S, I Zen, T Abe and T Hukuzawa. 1975. A experimental study on seawater mixed by concrete ash. Rep. Harbor Tech. Res. Inst. 14:113-132.
  26. Serisawa Y, Y Yokohama, Y Aruga and J Tanaka. 2002. Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol. Res. 50:201-207. https://doi.org/10.1111/j.1440-1835.2002.tb00152.x
  27. Serisawa Y, M Aoki, T Hirata, A Bellgrove, A Kurashima, Y Tsuchiya, T Sato, H Ueda and Y Yokohama. 2003. Growth and survival rates of large-type sporophytes of Ecklonia cava transplanted to a growth environment with small-type sporophytes. J. Appl. Phycol. 15:311-318. https://doi.org/10.1023/A:1025183100958
  28. Serisawa Y, Z Imoto, T Ishikawa and M Ohno. 2004. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish. Sci. 70:189-191. https://doi.org/10.1111/j.0919-9268.2004.00788.x
  29. Suto S. 1992. A trial to relate marine benthic floras more precisely to their environmental conditions. Jpn. J. Phycol. 40:289-305.
  30. Terawaki T and S Arai. 2004. Eisenia and Ecklonia. pp. 133-157. In: Biology and Technology of Economic Seaweeds (Ohno M ed.). Uchida Rokakuho Publishing Co. Ltd. Tokyo.