DOI QR코드

DOI QR Code

Mechanics of anisotropic cardiac muscles embedded in viscoelastic medium

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed Amine (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Ghandourah, E. (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Elbahar, Mohamed (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Khan, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Elimame, Elaloui (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa)
  • 투고 : 2021.02.25
  • 심사 : 2021.04.26
  • 발행 : 2021.07.25

초록

In the present work the author incorporated the surrounding medium with Hodgkin Huxley model to account the effect of surroundings on the flow of current in cardiac muscles fibers. The Hodgkin Huxley Kelvin like model is developed here and then the governing equations are solved by appropriate mathematical methods and the obtained results are compared with the previous experimental findings. Through obtained solutions, we check the mechanical properties in actual environment of cardiac muscles fibres and compare our findings with experimental results. Previous Hodgkin Huxley model did not give any idea about the medium, in which the cardiac muscles are immersed. The new developed model accounts the effect of medium efficiently on the current flow along with fiber's stimulation in cardiac muscles.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

참고문헌

  1. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. http://doi.org/10.12989/acc.2018.6.6.585.
  2. Arakawa, T., Goguri, S., Krogmeier, J.V., Kruger, A., Love, D.J., Mudumbai, R. and Swabey, M.A. (2018), "Optimizing wireless power transfer from multiple transmit coils", IEEE Access, 6, 23828-23838. http://doi.org/10.1109/ACCESS.2018.2825290.
  3. Barker, A., Freeston, I., Jalinous, R. and Jarratt, J. (1987), "Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation", Neurosurgery, 20(1), 100-109. http://doi.org/10.1097/00006123-198701000-00024.
  4. Barker, A.T., Jalinous, R. and Freeston, I.L. (1985), "Non-invasive magnetic stimulation of human motor cortex", Lancet, 325(8437), 1106-1107. https://doi.org/10.1016/S0140-6736(85)92413-4
  5. Barr, D.J. (1980), "An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales", Can. J. Botany, 58(22), 2380-2394. https://doi.org/10.1139/b80-276.
  6. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  7. Byers, B. and Goetsch, L. (1976), "A highly ordered ring of membrane-associated filaments in budding yeast", J. Cell. Biol., 69(3), 717-721. https://doi.org/10.1083/jcb.69.3.717
  8. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
  9. Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
  10. Clerc, L. (1976), "Directional differences of impulse spread in trabecular muscle from mammalian heart", J. Physiol., 255(2), 335-346. https://doi.org/10.1113/jphysiol.1976.sp011283.
  11. Cohen, L.G. and Hallett, M. (1988), "Hand cramps: clinical features and electromyographic patterns in a focal dystonia", Neurology, 38(7), 1005-1005. https://doi.org/10.1212/WNL.38.7.1005.
  12. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. http://doi.org/10.12989/acc.2019.7.2.065.
  13. Dhein, S., Seidel, T., Salameh, A., Jozwiak, J., Hagen, A., Kostelka, M., ... & Mohr, F.W. (2014), "Remodeling of cardiac passive electrical properties and susceptibility to ventricular and atrial arrhythmias", Front. Physiol., 5, 424. https://doi.org/10.3389/fphys.2014.00424.
  14. Geselowitz, D.B. (1989), "On the theory of the electrocardiogram", Proc. IEEE, 77(6), 857-876. http://doi.org/10.1109/5.29327.
  15. Geselowitz, D.B. and Miller, W. (1983), "A bidomain model for anisotropic cardiac muscle", Ann. Biomed. Eng., 11(3-4), 191-206. https://doi.org/10.1007/BF02363286.
  16. Geselowitz, D.B. and Schmitt, O. (1969), "Electrocardiography", Biolog. Eng., 333-390.
  17. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  18. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  19. Juul, M. and Walters, P.G. (1987), "The internationalisation of Norwegian firms: a study of the UK experience", Manage. Int. Rev., 58-66.
  20. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015)", "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. http://doi.org/10.12989/acc.2015.3.1.039.
  21. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S. and Pitts, W.H. (1959), "What the frog's eye tells the frog's brain", Proc. IRE, 47(11), 1940-1951. http://doi.org/10.1109/JRPROC.1959.287207.
  22. Mcintyre, C.C. and Grill, W.M. (1999), "Excitation of central nervous system neurons by nonuniform electric fields", Biophys. J., 76(2), 878-888. https://doi.org/10.1016/S0006-3495(99)77251-6.
  23. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. http://doi.org/10.12989/acc.2017.5.5.539.
  24. Morris, R. (1979), Social Policy of the American Welfare State: An Introduction to Policy Analysis, Harper & Row.
  25. Morrongiello, B.A. and Hogg, K. (2004), "Mothers' reactions to children misbehaving in ways that can lead to injury: Implications for gender differences in children's risk taking and injuries", Sex Rol., 50(1), 103-118. https://doi.org/10.1023/B:SERS.0000011076.43831.a6.
  26. Nadeem, M., Thorlin, T., Gandhi, O.P. and Persson, M. (2003), "Computation of electric and magnetic stimulation in human head using the 3-D impedance method", IEEE Tran. Biomed. Eng., 50(7), 900-907. https://doi.org/10.1109/TBME.2003.813548.
  27. Ommaya, A.K. and Gennarelli, T. (1974), "Cerebral concussion and traumatic unconsciousness: correlation of experimental and clinical observations on blunt head injuries", Brain, 97(4), 633-654. https://doi.org/10.1093/brain/97.1.633
  28. Polson, M., Barker, A. and Gardiner, S. (1982), "The effect of rapid rise-time magnetic fields on the ECG of the rat", Clinic. Phys. Physiol. Measure., 3(3), 231. https://doi.org/10.1088/0143-0815/3/3/008
  29. Roth, B.J. and Basser, P.J. (1990), "A model of the stimulation of a nerve fiber by electromagnetic induction", IEEE Tran. Biomed. Eng., 37(6), 588-597. https://doi.org/10.1109/10.55662.
  30. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
  31. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  32. Spach, M.S., Miller 3rd, W., Geselowitz, D.B., Barr, R.C., Kootsey, J.M. and Johnson, E.A. (1981), "The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents", Circul. Res., 48(1), 39-54. https://doi.org/10.1161/01.RES.48.1.39.
  33. Spach, M.S., Miller 3rd, W., Miller-Jones, E., Warren, R.B. and Barr, R.C. (1979), "Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle", Circul. Res., 45(2), 188-204. https://doi.org/10.1161/01.RES.45.2.188.
  34. Thompson, P., Berardelli, A., Rothwell, J., Day, B., Dick, J., Benecke, R. and Marsden, C. (1988), "The coexistence of bradykinesia and chorea in Huntington's disease and its implications for theories of basal ganglia control of movement", Brain, 111(2), 223-244. https://doi.org/10.1093/brain/111.2.223.
  35. Waldman, L.K., Fung, Y. and Covell, J.W. (1985), "Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains", Circul. Res., 57(1), 152-163. https://doi.org/10.1161/01.RES.57.1.152.
  36. Weidmann, S. (1970), "Electrical constants of trabecular muscle from mammalian heart", J. Physiol., 210(4), 1041-1054. https://doi.org/10.1113/jphysiol.1970.sp009256.
  37. Wu, F., Ma, J. and Zhang, G. (2019), "A new neuron model under electromagnetic field", Appl. Math. Comput., 347, 590-599. https://doi.org/10.1016/j.amc.2018.10.087.