DOI QR코드

DOI QR Code

Application of the Combination of Soybean Lecithin and Whey Protein Concentrate 80 to Improve the Bile Salt and Acid Tolerance of Probiotics

  • Gou, Xuelei (Yunnan Huangshi Lesson Dairy Industry Co., Ltd.) ;
  • Zhang, Libo (Yunnan Huangshi Lesson Dairy Industry Co., Ltd.) ;
  • Zhao, Shiwei (Yunnan Huangshi Lesson Dairy Industry Co., Ltd.) ;
  • Ma, Wanping (Yunnan Huangshi Lesson Dairy Industry Co., Ltd.) ;
  • Yang, Zibiao (Yunnan Huangshi Lesson Dairy Industry Co., Ltd.)
  • Received : 2021.03.10
  • Accepted : 2021.05.06
  • Published : 2021.06.28

Abstract

To improve the bile salt and acid tolerance of probiotics against gastrointestinal stresses, we investigated the effects of soybean lecithin and whey protein concentrate (WPC) 80 on the bile salt tolerance of Lacticaseibacillus paracasei L9 using a single-factor methodology, which was optimized using response surface methodology (RSM). The survival rate of L. paracasei L9 treated with 0.3% (w/v) bile salt for 2.5 h, and combined with soybean lecithin or WPC 80, was lower than 1%. After optimization, the survival rate of L. paracasei L9 incubated in 0.3% bile salt for 2.5 h reached 52.5% at a ratio of 0.74% soybean lecithin and 2.54% WPC 80. Moreover, this optimized method improved the survival rate of L. paracasei L9 in low pH condition and can be applied to other lactic acid bacteria (LAB) strains. Conclusively, the combination of soybean lecithin and WPC 80 significantly improved the bile salt and acid tolerance of LAB. Our study provides a novel approach for enhancing the gastrointestinal tolerance of LAB by combining food-derived components that have different properties.

Keywords

Acknowledgement

This work was supported by Yunnan Engineering Technology Research Center of Dairy Products Fermentation [2018DH003.]

References

  1. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13: 260-270. https://doi.org/10.1038/nrg3182
  2. Hempel S, Newberry SJ, Maher AR, Wang Z, Miles JN, Shanman R, et al. 2012. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 307: 1959-1969. https://doi.org/10.1001/jama.2012.3507
  3. Goldenberg JZ, Yap C, Lytvyn L, Lo CK, Beardsley J, Mertz D, et al. 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane. Database. Syst. Rev. 12: CD006095.
  4. Shanahan F, Quigley EM. 2014. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 146: 1554-1563. https://doi.org/10.1053/j.gastro.2014.01.050
  5. McQuade JL, Daniel CR, Helmink BA, Wargo JA. 2019. Modulating the microbiome to improve therapeutic response in cancer. Lancet. Oncol. 20: e77-e91. https://doi.org/10.1016/S1470-2045(18)30952-5
  6. Begley M, Gahan CG, Hill C. 2005. The interaction between bacteria and bile. FEMS. Microbiol. Rev. 29: 625-651. https://doi.org/10.1016/j.femsre.2004.09.003
  7. Li C, Bei T, Niu Z, Guo X, Wang M, Lu H, et al. 2019. Adhesion and colonization of the probiotic Lactobacillus rhamnosus labeled by Dsred2 in mouse gut. Curr. Microbiol. 76: 896-903. https://doi.org/10.1007/s00284-019-01706-8
  8. Ruiz L, Margolles A, Sanchez B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4: 396. https://doi.org/10.3389/fmicb.2013.00396
  9. Mena B, Aryana K. 2018. Short communication: lactose enhances bile tolerance of yogurt culture bacteria. J. Dairy. Sci. 101: 1957-1959. https://doi.org/10.3168/jds.2017-13919
  10. Hu B, Tian F, Wang G, Zhang Q, Zhao J, Zhang H, et al. 2015. Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin. Lett. Appl. Microbiol. 61: 13-19. https://doi.org/10.1111/lam.12418
  11. Vargas LA, Olson DW, Aryana KJ. 2015. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12. J. Dairy Sci. 98: 2215-2221. https://doi.org/10.3168/jds.2014-8869
  12. Zhou Y, Wang JQ, Hu CH, Ren LQ, Wang DC, Ye BC. 2019. Enhancement of bile resistance by maltodextrin supplementation in Lactobacillus plantarum Lp-115. J. Appl. Microbiol. 126: 1551-1557. https://doi.org/10.1111/jam.14229
  13. Lei S, Li X, Liu L, Zheng M, Chang Q, Zhang Y, et al. 2020. Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt. Int. J. Biol. Macromol. 151: 384-393. https://doi.org/10.1016/j.ijbiomac.2020.02.197
  14. Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12: 661-672. https://doi.org/10.1038/nrmicro3344
  15. Sanchez B, Champomier-Verges MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, et al. 2007. Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl. Environ. Microbiol. 73: 6757-6767. https://doi.org/10.1128/AEM.00637-07
  16. Taranto MP, Perez-Martinez G, Font de Valdez G. 2006. Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res. Microbiol. 157: 720-725. https://doi.org/10.1016/j.resmic.2006.04.002
  17. Kumar RS, Brannigan JA, Prabhune AA, Pundle AV, Dodson GG, Dodson EJ, et al. 2006. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J. Biol. Chem. 281: 32516-32525. https://doi.org/10.1074/jbc.M604172200
  18. Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE, Crowley CL. 1999. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol. Lett. 108: 37-46. https://doi.org/10.1016/S0378-4274(99)00113-7
  19. Bustos AY, Saavedra L, de Valdez GF, Raya RR, Taranto MP. 2012. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria. Biotechnol. Lett. 34: 1511-1518. https://doi.org/10.1007/s10529-012-0932-5
  20. Badely M, Sepandi M, Samadi M, Parastouei K, Taghdir M. 2019. The effect of whey protein on the components of metabolic syndrome in overweight and obese individuals; a systematic review and meta-analysis. Diabetes Metab. Syndr. 13: 3121-3131. https://doi.org/10.1016/j.dsx.2019.11.001
  21. Krunic TZ, Obradovic NS, Rakin MB. 2019. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. 293: 74-82. https://doi.org/10.1016/j.foodchem.2019.04.062
  22. Hu PL, Yuan YH, Yue TL, Guo CF. 2018. A new method for the in vitro determination of the bile tolerance of potentially probiotic lactobacilli. Appl. Microbiol. Biotechnol. 102: 1903-1910. https://doi.org/10.1007/s00253-018-8742-x
  23. Noriega L, Gueimonde M, Sanchez B, Margolles A, de los Reyes-Gavilan CG. 2004. Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. Int. J. Food Microbiol. 94: 79-86. https://doi.org/10.1016/j.ijfoodmicro.2004.01.003
  24. Yang J, Ren F, Zhang H, Jiang L, Hao Y, Luo X. 2015. Induction of regulatory dendritic cells by lactobacillus paracasei L9 prevents allergic sensitization to bovine β-lactoglobulin in mice. J. Microbiol. Biotechnol. 25: 1687-1696. https://doi.org/10.4014/jmb.1503.03022
  25. Wang X, Hui Y, Zhao L, Hao Y, Guo H, Ren F. 2017. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One 12: e0171721. https://doi.org/10.1371/journal.pone.0171721
  26. Fuochi V, Petronio GP, Lissandrello E, Furneri PM. 2015. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int. J. Immunopathol. Pharmacol. 28: 426-433. https://doi.org/10.1177/0394632015590948
  27. Bi J, Liu S, Du G, Chen J. 2016. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells. Biotechnol. Lett. 38: 659-665. https://doi.org/10.1007/s10529-015-2018-7
  28. Cho SK, Lee SJ, Shin SY, Moon JS, Li L, Joo W, et al. 2015. Development of bile salt-resistant Leuconostoc citreum by expression of bile salt hydrolase gene. J. Microbiol. Biotechnol. 25: 2100-2105. https://doi.org/10.4014/jmb.1505.05072
  29. Feng K, Huang RM, Wu RQ, Wei YS, Zong MH, Linhardt RJ, et al. 2020. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions. Food. Chem. 310: 125977. https://doi.org/10.1016/j.foodchem.2019.125977
  30. Ross RP, Desmond C, Fitzgerald GF, Stanton C. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98: 1410-1417. https://doi.org/10.1111/j.1365-2672.2005.02654.x
  31. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105:13580-13585. https://doi.org/10.1073/pnas.0804437105
  32. Hasturk O, Jordan KE, Choi J, Kaplan DL. 2020. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 232: 119720. https://doi.org/10.1016/j.biomaterials.2019.119720
  33. Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. 2020. Polymeric carriers for enhanced delivery of probiotics. Adv. Drug. Deliv. Rev. 161-162: 1-21. https://doi.org/10.1016/j.addr.2020.07.014
  34. Sugano M, Goto S, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, et al. 1990. Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J. Nutr. 120: 977-985. https://doi.org/10.1093/jn/120.9.977
  35. Yasuda E, Tateno H, Hirabayashi J, Iino T, Sako T. 2011. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides. Appl. Environ. Microbiol. 77: 4539-46. https://doi.org/10.1128/AEM.00240-11