DOI QR코드

DOI QR Code

Antioxidant and Anti-inflammatory activity of Sargassum patens extract

쌍발이모자반(Sargassum patens) 추출물의 항산화 및 항염효과

  • Kim, Sook-hee (K-Beauty industry fusion, Konkuk Continuing Education Center, Konkuk University)
  • 김숙희 (건국대학교 미래지식교육원 학점은행제 K뷰티산업융합학전공학과)
  • Received : 2021.06.23
  • Accepted : 2021.07.20
  • Published : 2021.07.28

Abstract

In this study, the antioxidant and anti-inflammatory properties of Sargassum patens extracts were identified. Antioxidant experiments included polyphenol concentration measurements, flavonoid concentration measurements, DPPH experiments, ABTS experiment NO experiments, and FRAP experiments. For polyphenols, 18.99±0.69 mg/g was shown. Flavonoids showed 11.89±1.16 mg/g. The DPPH experiment showed an antioxidant function of 19.78 mg ascorbic acid/g extract, the ABTS experiment showed an antioxidant function of 63.64 mg ascorbic acid/g extract, and the NO experiment showed an antioxidant function of 7.966 mg ascorbic acid/g extract. In FRAP, 1 mg of the moxibustion extract showed a reduction of 2.089 ㎍ of ascorbic acid. In the meantime, cell experiments showed cytotoxicity and anti-inflammatory functions against inflammation induced by LPS. In cytotoxicity experiments, Sargassum patens extracts showed a cell survival rate of more than 80% at all concentrations, and an inflammatory inhibition of 30.64±0.23% at a concentration of 100 ㎍/mL. These results indicate that Sargassum patens extract is available as an anti-inflammatory cosmetic material.

본 연구에서는 쌍발이모자반 추출물의 항산화능 및 항염능을 확인하였다. 항산화능 실험에는 폴리페놀 농도측정, 플라보노이드 농도 측정, DPPH 실험, ABTS 실험, NO 실험, FRAP 실험을 실시하였다. 폴리페놀의 경우 18.99±0.69 mg/g으로 나타났다. 플라보노이드의 경우 11.89±1.16 mg/g으로 나타났다. DPPH 실험에서는 19.78 mg ascorbic acid / g extract의 항산화능을 나타내었으며, ABTS 실험에서는 63.64 mg ascorbic acid / g extract의 항산화능을 나타내었으며, NO 실험에서는 7.966 mg ascorbic acid / g extract의 항산화능을 나타내었다. FRAP에서는 쌍발이모자반 추출물의 1 mg이 ascorbic acid 2.089 ㎍의 환원력을 보였다. 한편 세포실험에서는 세포 독성과 LPS로 유도된 염증에 대한 항염능을 알아보았다. 세포독성의 경우 모든 농도에서 80%이상의 세포 생존률을 보였으며, NO 생성 억제능의 경우 100 ㎍/mL 농도에서 30.64±0.23%의 염증 억제능을 보여 쌍발이모자반 추출물이 항염능을 가진 화장품 원료로서 사용가능함을 보였다.

Keywords

References

  1. J. H. Lee & B. A. Kim. (2019). A Study on Seaweed Sea Staghorn (Codium fragile) Ethanol Extract for Antioxidant. The Journal of the Convergence on Culture Technology, 5(4), 467-472. DOI : 10.17703/JCCT.2019.5.4.467
  2. T. Suganya, M. Varman, H. H. Masjuki & S. Renganathan. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941. DOI : 10.1016/j.rser.2015.11.026
  3. J. H. Jung. (2017). Anti-cancer Effect of Marine Resources Against Human Colorectal Cancer Cells. Journal of food hygiene and safety, 32(1), 70-74. DOI : 10.13103/JFHS.2017.32.1.70
  4. L. O'Sullivan, B. Murphy, P. McLoughlin, P. Duggan, P. G. Lawlor, H. Hughes & G. F. Gardiner. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038-2064. DOI : 10.3390/md8072038
  5. C. Deville, M. Gharbi, G. Dandrifosse & O. Peulen. (2007). Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. Journal of the Science of Food and Agriculture, 87(9), 1717-1725. DOI : 10.1002/jsfa.2901
  6. J. I. Choi, H. J. Kim & J. W. Lee. (2011). Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food chemistry, 129(2), 520-523. DOI : 10.1016/j.foodchem.2011.03.078
  7. A. M. Gamal-Eldeen, E. F. Ahmed & M. A. Abo-Zeid. (2009). In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food and Chemical Toxicology, 47(6), 1378-1384. DOI : 10.1016/j.fct.2009.03.016
  8. S. Ananthi, H. R. B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan & H. R. Vasanthi. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food and chemical toxicology, 48(1), 187-192. DOI : 10.1016/j.fct.2009.09.036
  9. T. T. Dang, M. C. Bowyer, I. A. Van Altena & C. J. Scarlett. (2018). Comparison of chemical profile and antioxidant properties of the brown algae. International Journal of Food Science & Technology, 53(1), 174-181. DOI : 10.1111/ijfs.13571
  10. A. Ratz-Lyko, J. Arct & K. Pytkowska. (2012). Methods for evaluation of cosmetic antioxidant capacity. Skin Research and Technology, 18(4), 421-430. DOI : 10.1111/j.1600-0846.2011.00588.x
  11. M. Schieber & N. S. Chandel. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462. DOI : 10.1016/j.cub.2014.03.034
  12. H. Masaki. (2010). Role of antioxidants in the skin: anti-aging effects. Journal of dermatological science, 58(2), 85-90. DOI : 10.1016/j.jdermsci.2010.03.003
  13. J. W. Shin, S. H. Kwon, J. Y. Choi, J. I. Na, C. H. Huh, H. R. Choi & K. C. Park. (2019). Molecular mechanisms of dermal aging and antiaging approaches. International journal of molecular sciences, 20(9), 2126. DOI : 10.3390/ijms20092126
  14. I. G. Munteanu & C. Apetrei. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7), 3380. DOI : 10.3390/ijms22073380
  15. A. Pekal & K. Pyrzynska. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782. DOI : 10.1007/s12161-014-9814-x
  16. M. S. Blois, (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  17. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. Rice-Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. DOI : 10.1016/S0891-5849(98)00315-3
  18. G. C. Jagetia & M. S. Baliga. (2004). The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. Journal of Medicinal Food, 7(3), 343-348. DOI : 10.4014/kjmb.1409.09006
  19. H. J. Son, M. Y. Um, I. H. Kim, S. M. Cho, D. S. Han & C. H. Lee. (2016). In Vitro Screening for Anti-Dementia Activities of Seaweed Extracts. Journal of the Korean Society of Food Science and Nutrition, 45(7), 966-972. DOI : 10.3746/jkfn.2016.45.7.966
  20. C. S. Kwak, S. A. Kim & M. S. Lee. (2005). The Correlation of Antioxidative Effects of 5 Korean Common Edible Seaweeds and Total Polyphenol Content. Journal of the Korean Society of Food Science and Nutrition, 34(8), 1143-1150. DOI : 10.3746/jkfn.2005.34.8.1143
  21. B. Alexander, D. J. Browse, S. J. Reading & I. S. Benjamin. (1999). A simple and accurate mathematical method for calculation of the EC50. Journal of pharmacological and toxicological methods, 41(2-3), 55-58. DOI : 10.1016/S1056-8719(98)00038-0
  22. Z. Demirel, F. F. Yilmaz-Koz, U. N. KarabayYavasoglu, G. Ozdemir & A. Sukatar. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628. DOI : 10.2298/JSC0906619D
  23. Z. Demirel, F. F. Yilmaz-Koz, U. N. Karabay-Yavasoglu, G. Ozdemir & A. Sukatar. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628. DOI : 10.2298/JSC0906619D
  24. E. Apostolova, P. Lukova, A. Baldzhieva, P. Katsarov, M. Nikolova, I. Iliev & V. Kokova. (2020). Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers, 12(10), 2338. DOI : 10.3390/polym12102338
  25. A. Cumashi, N. A. Ushakova, M. E. Preobrazhenskaya, A. D'Incecco, A. Piccoli, L. Totani & N. E. Nifantiev. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), 541-552. DOI : 10.1093/glycob/cwm014