DOI QR코드

DOI QR Code

볼트 체결형 란주반 초음파 트랜스듀서의 프렌지 포인트 최적화를 위한 실험적 방법 제안

Suggestion of an experimental method for optimization of flange point of a bolt-clamped Langevin-type ultrasonic transducer

  • 투고 : 2021.05.01
  • 심사 : 2021.06.08
  • 발행 : 2021.07.31

초록

강력초음파 분야에 있어서, 트랜스듀서의 고정을 위한 프렌지의 위치설정은 트랜스듀서의 변환효율에 큰 영향을 주는 중요한 요소이다. 본 연구에서는 볼트 체결형 란주반 초음파 트랜스듀서의 공진모드에 따른 프렌지의 설치 위치를 결정하기 위한 실험적 방법을 제안하였다. 제안된 방법에서는 반원형 쐐기 형태의 지그를 제작하여 트랜스듀서의 측면을 따라 이동하며 지그에 일정한 압력을 가한 후 트랜스듀서의 진동특성을 분석하였다. 압력을 가하는 위치에 따른 트랜스듀서의 입력 어드미턴스의 변화를 분석하여 프렌지의 최적의 위치를 결정할 수 있었다. 이 위치들은 메이슨 등가회로를 적용하여 계산한 공진 주파수 및 전송선로 모델 해석으로부터 계산한 각 공진 모드에 대한 입자속도 분포로부터 예측한 진동 모드의 절의 위치와 좋은 대응을 보이고 있어 본 연구에서 제안된 방법의 유효성을 확인할 수 있었다.

In the power ultrasound fields, the flange position for fixing the transducer is an important factor influencing on electro-mechanical efficiency of the transducer. We suggested a practical method that can determine the installation position of the flange for different resonance modes of the bolt-clamped type Langevin ultrasonic transducer. A semicircular wedge-shaped jig was manufactured and moved along the lateral surface of the transducer. The vibration characteristics were examined after a constant pressure was applied to the semicircular wedge-shaped jig. By observing the change of the input admittance of the transducer depending on the position of the pressure application, the optimum position for the flange installation could be determined. The resonant modes of the transducer were calculated by a Mason's equivalent circuit, and the particle velocity distribution for each resonance mode was calculated by a transmission line model. Since the optimum positions determined from an experimental result show a good correspondence with the node positions of the vibration modes calculated by the transmission line model, the validity of the suggested method was verified.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

참고문헌

  1. K. Adachi and M. Saito, "Construction of torsional-vibration systems with a hollow cylindrical bolt-clamped langevin-type transducer and their application to ultrasonic plastic welding," Jpn. J. Appl. Phys. 34, 2735-2739 (1995). https://doi.org/10.1143/JJAP.34.2735
  2. C. Yun, T. Ishi, K. Nakamura, S. Ueha, and K. Akashi, "A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped langevin type transducer," Jpn. J. Appl. Phys. 40, 3773-3776 (2001). https://doi.org/10.1143/JJAP.40.3773
  3. J. Tsujino, T. Ueoka, K. Hasegawa, Y. Fujita, T. Shiraki, T. Okada, and T. Tamura, "New methods of ultrasonic welding of metal and plastic materials," Ultrasonics, 34, 177-185 (1996). https://doi.org/10.1016/0041-624X(96)81780-X
  4. D. Yamaguchi, T. Kanda, and K. Suzumori, "An ultrasonic motor for cryogenic temperature using bolt-clamped Langevin-type transducer," Sens. Actuators A Phys. 184, 134-140 (2012). https://doi.org/10.1016/j.sna.2012.06.024
  5. S. Shi, W. Chen, and J. Liu, "A high speed ultrasonic linear motor using longitudinal and bending multimode bolt-clamped langevin type transducer," Proc. IEEE ICMA. 25-28 (2006).
  6. J. Kim and J. Lee, "Parametric study of bolt clamping effect on resonance characteristics of langevin transducers with lumped circuit models," Sensors. 20, 1952 (2020). https://doi.org/10.3390/s20071952
  7. H. Yamamori, T. Ito, K. Ohya, and H. Banno, "Characteristics of bolt-clamped langevin type ultrasonic transducer with square radiating surface," Jpn. J. Appl. Phys. 29, 167-169 (1990). https://doi.org/10.7567/JJAPS.29S1.167
  8. K. Adachi, Y. Konno, and S. Masaki, "Development of bolt-clamped langevin-type transducer with high mechanical quality factor for excitation of large torsional vibration," Jpn. J. Appl. Phys. 33, 1182-1188 (1994). https://doi.org/10.1143/JJAP.33.1182
  9. T. Takahashi and K. Adachi, "Experimental evaluation of the static strain on the clamping bolt in the structure of a bolt-clamped langevin-type transducer," Jpn. J. Appl. Phys. 47, 4736-4741 (2008). https://doi.org/10.1143/JJAP.47.4736
  10. M. Kim, H. Kanai, and N. Chubachi, "Non-contact measurement of particle velocity distribution of ultrasonic waves along an elastic laser Doppler velocimetry," J. Acoust. Soc. Jpn. (E)15, 339-344 (1994). https://doi.org/10.1250/ast.15.339
  11. V. M. Ristic, Principles of Acoustic Devices (John Wiley & Sons, Toronto, 1983), Chap. 5.
  12. N. Chubachi and M. Kim, "Transmission line model equivalent circuit piezoelectric transducers including the effect of electrical terminal impedance," Jpn. J. Appl. Phys. 35, 3231-3235 (1996). https://doi.org/10.1143/JJAP.35.3231
  13. T. Fukuoka, "Theory and practice of bolt tightening process," JIME. 46, 119-125 (2011).