DOI QR코드

DOI QR Code

압축성과 비압축성 유동해석에 따른 수중 추진기 날개 끝 와류공동과 공동소음에 대한 수치비교 연구

Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers

  • 하준범 (부산대학교 기계공학부) ;
  • 구가람 (부산대학교 기계공학부) ;
  • 조정훈 (부산대학교 기계공학부) ;
  • 정철웅 (부산대학교 기계공학부) ;
  • 설한신 (한국해양과학기술원부설 선박해양플랜트연구소)
  • 투고 : 2021.05.21
  • 심사 : 2021.06.28
  • 발행 : 2021.07.31

초록

공동 유동과 이로 인한 소음에 관한 대부분의 기존 연구들은 효율성이라는 장점 때문에 비압축성 가정의 검증 없이 비압축성 Reynolds averaged Navier-Stokes 방정식에 기반한 수치 해석 방법을 사용하고 있다. 하지만 지금까지 비압축성 가정이 공동 유동과 소음의 예측에 미치는 영향에 대한 연구가 전무한 실정이다. 본 연구에서는 날개 끝 와류공동 유동과 소음에 대한 유체의 압축성 영향을 고찰하기 위하여 날개 끝 와류 공동을 대상으로 비압축성 기반의 해석과 압축성 기반의 해석을 모두 수행하고, Ffowcs Williams and Hawkings(FW-H) 음향상사법을 적용하여 공동 소음을 예측하고 비교하였다. 상류 방향의 유동 영향을 고려하기 위하여, 스큐각이 17°인 수중 추진기를 장착한 DARPA Suboff 잠수함 몸체를 고려하였다. 해석 영역은 실험결과와의 비교를 위하여 선박해양플랜트연구소에서 보유하고 있는 대형 캐비테이션 터널의 시험부와 동일하게 설정하였다. 날개 끝 와류 공동을 정확하게 예측하기 위하여 고정확도의 비정상 상태 지연박리와류모사 해석방법을 적응형 격자 기법과 연계하여 사용하였다. 압축성 유동 해석기법을 이용하여 예측한 음향 스펙트럼이 실험결과와 더 일치하는 결과를 확인하였다.

Without any validation of the incompressible assumption, most of previous studies on cavitation flow and its noise have utilized numerical methods based on the incompressible Reynolds Average Navier-Stokes (RANS) equations because of advantage of its efficiency. In this study, to investigate the effects of the flow compressibility on the Tip Vortex Cavitation (TVC) flow and noise, both the incompressible and compressible simulations are performed to simulate the TVC flow, and the Ffowcs Williams and Hawkings (FW-H) integral equation is utilized to predict the TVC noise. The DARPA Suboff submarine body with an underwater propeller of a skew angle of 17 degree is targeted to account for the effects of upstream disturbance. The computation domain is set to be same as the test-section of the large cavitation tunnel in Korea Research Institute of Ships and Ocean Engineering to compare the prediction results with the measured ones. To predict the TVC accurately, the Delayed Detached Eddy Simulation (DDES) technique is used in combination with the adaptive grid techniques. The acoustic spectrum obtained using the compressible flow solver shows closer agreement with the measured one.

키워드

과제정보

본 논문은 방위사업청과 국방과학연구소가 지원하는 선박해양플랜트연구소의 연구과제인 "미래 잠수함 저소음 추진기 특화연구실"의 "미래 잠수함 추진기 소음 모형시험법 개발 및 D/B 구축 연구 (FS-02)"의 연구 결과 중 일부임.

참고문헌

  1. J. Bae, J. Park, and J. Yoon, "Characteristics of impulsive noise of waterfront construction site and its effects on fishes" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 19, 928-934 (2009). https://doi.org/10.5050/KSNVN.2009.19.9.928
  2. H. Sohn, D. An, and H. Kim, "A study on the legal frame to manage anthropogenic underwater noise for marine mammal protection in Korean waters" (in Korean), Ocean Pol. R. 30, 163-186 (2015).
  3. Y. Lim, K. Jo, and J. Yeun, "A study on the improvement of cavitation inception speed for controllable pitch propeller in the actual warship" (in Korean), J. Korean Soc. Marine Eng. 38, 1170-1174 (2014). https://doi.org/10.5916/jkosme.2014.38.9.1170
  4. S. Park, S. Lee, G. You, and J. Suh, "Vortex cavitation inception delay by attaching a twisted thread" (in Korean), J. Soc. Nav. Arch. Korea, 51, 259-264 (2014). https://doi.org/10.3744/SNAK.2014.51.3.259
  5. J. Ahn, G. Kim, K. Kim, Y. Park, H. Ahn, Y. Jung, and J. Yoon, "Performance improvement study of propeller propulsion efficiency and cavitation for the 8800TEU class container" (in Korean), J. Soc. Nav. Arch. Korea, 54, 453-460 (2017). https://doi.org/10.3744/SNAK.2017.54.6.453
  6. H. Seol, C. Park, and K. Kim, "Numerical prediction of marine propeller bpf noise using FW-H equation and its experimental validation" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 26, 705-713 (2016). https://doi.org/10.5050/KSNVE.2016.26.6.705
  7. H. Seol, "Time domain method for the prediction of pressure fluctuation induced by propeller sheet cavitation: Numerical simulations and experimental validation," Ocean Eng. 72, 287-296 (2013). https://doi.org/10.1016/j.oceaneng.2013.06.030
  8. I. Park, J. Kim, K. Kim, J. Ahn, Y. Park, and M. kim, "Numerical analysis of the wake of a surface ship model mounted in KRISO large cavitation tunnel" (in Korean), J. Soc. Nav. Arch. Korea, 53, 494-502 (2016). https://doi.org/10.3744/SNAK.2016.53.6.494
  9. I. Park, J. Kim, H. Seol, K. Kim, and J. Ahn, "Numerical analysis of tip vortex and cavitation of elliptic hydrofoil with NACA 66 2-415 cross section" (in Korean), J. Ocean Eng. Tech. 32, 244-252 (2018). https://doi.org/10.26748/KSOE.2018.6.32.4.244
  10. I. Park, K. Kim, J. Kim, H. Seol, Y. Park, and J. Ahn, "Numerical study on propeller cavitation and pressure fluctuation of model and full scale ship for a MR tanker" (in Korean), J. Soc. Nav. Arch. Korea, 57, 35-44 (2020). https://doi.org/10.3744/SNAK.2020.57.1.035
  11. J. Cho, G. Ku, C. Cheong, and H. Seol, "Numerical investigation of cavitation noise of the submarine propellers using DDES technique and quadrupole corrected FW-H equation", Proc. INTER-NOISE and NOISE-CON Cong. and Conf. 4376-4381(2020).
  12. A. Purwana, I. M. Ariana, W. Wardhana, and D. W. Handani, "Performance and noise prediction of marine propeller using numerical simulation," Proc. 3rd Int. Sem. Sci. Technol. 20-25 (2017).
  13. D. Li, J. Hallander, and T. Johansson, "Predicting underwater radiated noise of a full scale ship with model testing and numerical methods," Ocean Eng. 161, 121-135 (2018). https://doi.org/10.1016/j.oceaneng.2018.03.027
  14. G. Ku, S. Ryu, and C. Cheong, "Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation" (in Korean), J. Acoust. Soc. Kr. 37, 263-270 (2018).
  15. S. Kim, C. Chenong, W. Park, and H. Seol, "Numerical investigation of cavitation flow around hydrofoil and its flow noise" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 26, 141-147 (2016). https://doi.org/10.5050/KSNVE.2016.26.2.141
  16. S. Kim, C. Cheong, and W. Park, "Numerical investigation into the effects of viscous flux on cavitation flow around hydrofoil," Trans. Korean Soc. Noise Vib. Eng. 721-729 (2017).
  17. S. Kim, C. Cheong, and W. Park, "Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise," Appl. Sci. 8, 289 (2018). https://doi.org/10.3390/app8020289
  18. M. Ha, C. Cheong, H. Seol, B. Paik, M. Kim, and Y. Jung, "Development of efficient and accurate parallel computation algorithm using moving overset grids on background multi-domains for complex two-phase flows," Appl. Sci. 8, 1937 (2018). https://doi.org/10.3390/app8101937
  19. S. Kim, C. Cheong, and W. Park, "Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models," AIP Advances 7, 065114 (2017). https://doi.org/10.1063/1.4989587
  20. G. Ku, C. Cheong, S. Kim, C.-T. Ha, and W. Park, "Numerical study on cavitation flow and noise in the flow around a Clark-Y Hydrofoil" (in Korean), Trans. Korean Soc. Mech. Eng. A 41, 87-94 (2017). https://doi.org/10.3795/KSME-A.2017.41.2.087
  21. M. S. Gritskevich, A. V. Garbaruk, J. Schutze, and F. R. Menter, "Development of DDES and IDDES formulations for the k-ω shear stress transport model," Flow, Turbul. Combust. 88, 431-449 (2012). https://doi.org/10.1007/s10494-011-9378-4
  22. G. Lee, K. Chang, S. Lee, and G. Kim, "Numerical simulations of transitional flow over aerospatiale A-airfoil using DDES and IDDES" (in Korean), J. Comput. Fluids Eng. 24, 1-7 (2019).
  23. Y. Liu, H. Yan, L. Lu, and Q. Li, "Investigation of vortical structures and turbulence characteristics in corner separation in a linear compressor cascade using DDES," J. Fluids Eng. 139 (2017).
  24. N. Zhang, X. Liu, B. Gao, and B. Xia, "DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump," Renew. Energy, 141, 570-582 (2019). https://doi.org/10.1016/j.renene.2019.04.023
  25. K. S. Brentner and F. Farassat, "An analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces," AIAA J. 36, 1379-1388 (1998). https://doi.org/10.2514/2.558
  26. J. Y. Zhu, Z. W. Hu, and D. J. Thompson, "The flow and flow-induced noise behaviour of a simplified high-speed train bogie in the cavity with and without a fairing," Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Tra. 232, 759-773 (2018). https://doi.org/10.1177/0954409717691619
  27. C. E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, Cambridge, UK, 2014), pp. 47-216.