DOI QR코드

DOI QR Code

Effects of Climate Change on Purple Laver Farming in Maro-hae (Jindo-gun and Haenam-gun), Republic of Korea and Countermeasures

기후변화가 마로해의 김 양식에 미치는 영향 및 대응방안

  • Kim, Tae-Hyung (Institute of Fishing village & Aquaculture, Chonnam National University) ;
  • Shin, Jong-Ahm (General Director of Technology, Underwater Ecology Institute) ;
  • Choi, Sang-Duk (Faculty of Marine Technology, College of Fisheries & Ocean Science, Chonnam National University)
  • Received : 2021.06.04
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

Global warming affects critical natural resources, one of which is the oceans that occupy 70% of the total cover of the earth. In other words, ocean warming is a subset of global warming which needs to be addressed urgently. Purple laver (pyropia spp.) is one of the most vulnerable items to climate change although it is a major export product of Korean fisheries. The purpose of this study is to analyze the causality of how climate change caused by global warming affects the increase or decrease of PLP (purple laver production). The target area for analysis was set to Maro-hae between Jindo-gun and Haenam-gun. We selected marine environmental factors and meteorologic factors that could affect PLP as variables, as well as co-integration tests to determine long-term balance, and the Granger causticity tests. As a result, PLP and marine environmental factors WT (water temperature), pH, and DO confirmed that long-term equilibrium relationships were established, respectively. However, there is only causality with WT and it is confirmed that there is only a correlation between pH and DO (dissolved oxygen). There was no long-term equilibrium relationship between PLP and HDD (heating degree days) and there is a causal effect that HDD affects PLP; however, it was less clear than that of WT. The relationship between PLP and RF (rainfall), WS (wind speed), SS (percentage of sunshine), and FF (farm facilities) was all balanced in the long term, and causality exists. Based on the results of the analysis, policy proposals were made.

Keywords

References

  1. 국립수산과학원(2018), "수산양식기술(김) 매뉴얼", ISBN 979-11-964926-3-2.
  2. 국립수산과학원(2019), "수산분야 기후변화 평가 백서".
  3. 권정노.심정희.이상용.조진대(2013), "낙동강 하구 해양환경 및 기상 요인이 김(Porphyra yezoensis) 생산량 변화에 미치는 영향", Korean Journal of Fisheries and Aquatic Sciences, 46(6), 868-877. https://doi.org/10.5657/KFAS.2013.0868
  4. 기상청(2018), "한반도 2018 보고서".
  5. 김정배(2016), "안정동위원소 및 Diving-PAM 을 이용한 남서해안 만호해역 (진도-해남) 김 양식장에서의 일차 생산력", 환경생물, 34(1), 18-29. https://doi.org/10.11626/KJEB.2016.34.1.018
  6. 김충재(2018), "기후변화가 초래한 수산업의 위기와 강원도의 대응 방향", 강원연구원, 정책메모, 1-3.
  7. 김태형(2020), "기후변화와 김 생산량 간의 인과성 및 김 위판 가격예측모형", 박사학위논문, 전남대학교, 1-157.
  8. 박성쾌.권혁준.박종운.차철표(2010), "기후변화와 수산업의 관계에 관한 연구", 수산해양교육연구, 22(3), 388-401.
  9. 배영수(2015), "공적분 기법을 이용한 중장기 에너지 수요함수 추정 및 전망", 에너지경제연구, 14(2), 21-50.
  10. 백은영(2015), "일본의 김종묘생산 현장방문기", 수산관측 리뷰, 한국해양수산개발원, 3, 73-81.
  11. 백은영(2017), "한국 김 종자 생산현황과 발전방안에 관한 연구", 한국도서연구, 29(2), 53-71.
  12. 백은영.노아현.김기완.이남수(2020), "이상 고온으로 해조류 공급차질 우려, 수급관리체계 재정비 필요", KMI 동향분석, 166, 1-18.
  13. 우경숙.신영전(2014), "체계적 문헌고찰을 통한 국내 보건복지 분야의 시계열 분석 연구 동향", 한국데이터정보과학회지, 25(3), 579-599.
  14. 유승훈(2003), "정부 R&D 투자와 민간 R&D 투자의 인과관계 분석", 기술혁신연구, 11(2), 175-193.
  15. 이충일.김현주(2007), "멸치와 김 생산량 변동에 미치는 수온의 영향", 한국환경과학회지, 16(8), 897-906. https://doi.org/10.5322/jes.2007.16.8.897
  16. 임효혁.강대석.남정호(2003), "연안유역관리를 위한 해양환경수용력 평가모델의 활용 개선방안", 해양정책연구, 18(1), 33-69.
  17. 전라남도, 해양수산과학원(2020), "전남도, 2021년산 김 양식 채묘적기 예보".
  18. 해양수산부, 수산정보포털 Available at: https://www.fips.go.kr/
  19. 해양수산부, 해양환경측정망 Available at: https://www.meis.go.kr/mei/observe/port.do.
  20. 현대해양(2020), "김 생산 적신호, 관성적 채묘 중단해야". Retrieved from http://www.hdhy.co.kr/news/articleView.html?idxno=11913.
  21. 홍재상.송춘복.김남길.김종만.허형택(1987), "광양만의 김 생산과 양식장환경과의 관계에 대하여", 한국수산과학회지, 20(3), 237-247.
  22. 환경부(2020), "한국 기후변화 평가보고서 2020: 기후변화 영향 및 적응", ISBN 978-89-93652-58-1.
  23. Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J. and Thomas, A. C. (2018), "Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans," Elementa: Science of the Anthropocene, 6(9).
  24. Bond, N. A., Cronin, M. F., Freeland, H. and Mantua, N. (2015), "Causes and impacts of the 2014 warm anomaly in the NE Pacific," Geophysical Research Letters, 42(9), 3414-3420. https://doi.org/10.1002/2015GL063306
  25. Brander, K., Cochrane, K., Barange, M. and Soto, D. (2017), "Climate change implications for fisheries and aquaculture," Climate changes impacts on fisheries and aquaculture, A global analysis, John Wiley & Sons, New Jersey, 45-62.
  26. Breitburg, D., Levin, L. A., Oschlies, A., Gregoire, M., Chavez, F. P., Conley, D. J., Garcon, V., Gilbert, D., Gutierrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M. and Zhang, J. (2018), "Declining oxygen in the global ocean and coastal waters," Science, 359 (6371).
  27. Cisneros-Mata, M. A., Mangin, T., Bone, J., Rodriguez, L., Smith, S. L. and Gaines, S. D. (2019), "Fisheries governance in the face of climate change: Assessment of policy reform implications for Mexican fisheries," PLoS One, 14 (10).
  28. Engle, R. F. and Granger, C. W. (1987), "Co-integration and error correction: representation, estimation, and testing, Econometrica," Journal of the Econometric Society, 55(2), 251-276. https://doi.org/10.2307/1913236
  29. Granger, C. W. J. and Newbold, P. (1974), "Spurious regressions in econometrics", Journal of Econometrics 2, 111-120. https://doi.org/10.1016/0304-4076(74)90034-7
  30. Hedberg, N., Schreeb, K. V., Charisiadou, S., Jiddawi, N. S., Tedengren, M. and Nordlund, L. M. (2018), "Habitat preference for seaweed farming - A case study from Zanzibar, Tanzania," Ocean & Coastal Management, 154, 186-195. https://doi.org/10.1016/j.ocecoaman.2018.01.016
  31. IPCC (2014), "Climate Change 2014: Synthesis Report," Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  32. IPCC (2019), "The Ocean and cryosphere in a changing climate," A special report of the intergovernmental Panel on climate change. Intergovernmental Panel on climate change.
  33. Kataoka, T., Tozuka, T., Behera, S. and Yamagata, T. (2014), "On the Ningaloo Nino/Nina," Climate dynamics, 43, 1463-1482. https://doi.org/10.1007/s00382-013-1961-z
  34. Kelleher, J. D. and Tierney, B. (2018). "Data science," MIT Press.
  35. Kim, B. T., Brown, C. L. and Kim, D. H. (2019), "Assessment on the vulnerability of Korean aquaculture to climate change," Marine Policy, 99, 111-122. https://doi.org/10.1016/j.marpol.2018.10.009
  36. KMA (Korea Meteorological Administration), Weather Data Service. Available at: https://data.kma.go.kr/cmmn/main.do.
  37. KMI (Korea Maritime Institute). Available at: www.foc.re.kr.
  38. Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcon, Y., Schwinger, J., Seferian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A. and Ziehn, T. (2020), "Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections," Biogeosciences, 17 (13), 3439-3470. https://doi.org/10.5194/bg-17-3439-2020
  39. Mills, K. E., Pershing, A. J., Brown, C. J., Chen, Y., Chiang, F. S., Holland, D. S., Lehuta, S., Nye, J. A., Sun, J. C., Thomas A. C. and Wahle, R. A. (2013), "Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic," Oceanography, 26(2), 191-195.
  40. Ramirez, I. J. and Briones, F. (2017), "Understanding the El Nino Costero of 2017: The Definition Problem and Challenges of Climate Forecasting and Disaster Responses," International Journal of Disaster Risk Science, 8 (4), 489-492. https://doi.org/10.1007/s13753-017-0151-8
  41. Ridley, M. (2003). "Nature via nurture: Genes, experience, and what makes us human," New York.
  42. Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin III, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., Wit, C. A., Hughes, T., Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P. and Foley, J. (2009), "Planetary boundaries: Exploring the safe operating space for humanity," Ecology and society, 14(2).
  43. Ruckelshaus, M., Doney, S. C., Galindo, H. M., Barry, J. P., Chan, F., Duffy, J. E., English, C. A., Gaines, S. D., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J. and Talley, L. D. (2013), "Securing ocean benefits for society in the face of climate change," Marine Policy, 40, 154-159. https://doi.org/10.1016/j.marpol.2013.01.009
  44. Schwert, G. W. (1987), "Effects of model specification on tests for unit roots in macroeconomic data," Journal of monetary economics, 20(1), 73-103. https://doi.org/10.1016/0304-3932(87)90059-6
  45. Schwert, G. W. (2002), "Tests for unit roots: A Monte Carlo investigation," Journal of Business & Economic Statistics, 20(1), 5-17. https://doi.org/10.1198/073500102753410354
  46. Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., Vries, W., Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B. and Sorlin, S. (2015), "Planetary boundaries: Guiding human development on a changing planet," Science, 80, 347.
  47. Tada, K., Fujiwara, M. and Honjo, T. (2010), "Water quality and Nori (porphyra) culture in the Seto Inland Sea", Bunseki Kagaku/Japan Analyst, 59(11), 945-955. https://doi.org/10.2116/bunsekikagaku.59.945
  48. WMO (World Meteorological Organization) (2019), "The Global Climate in 2015-2019," World Meteorological Organization, Geneva, 24.