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Special Article

Traditional epidemiological studies have identified a number of risk factors for various diseases using regression-based methods that 

examine the association between an exposure and an outcome (i.e., one-to-one correspondences). One of the major limitations of 

this approach is the “black-box” aspect of the analysis, in the sense that this approach cannot fully explain complex relationships such 

as biological pathways. With high-throughput data in current epidemiology, comprehensive analyses are needed. The network ap-

proach can help to integrate multi-omics data, visualize their interactions or relationships, and make inferences in the context of bio-

logical mechanisms. This review aims to introduce network analysis for systems epidemiology, its procedures, and how to interpret its 

findings.
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INTRODUCTION

Epidemiology contributes to the identification of risk factors 
for various diseases. However, conventional (traditional) analy-
ses in epidemiology use regression, which examines the asso-
ciation between an exposure and an outcome as a one-to-one 
correspondence. This approach has a major limitation (referred 
to as the “black-box” nature of the analysis) in that it cannot 
fully explain complex relationships such as biological path-
ways [1-3].

To reveal the mechanisms previously hidden in the “black 
box,” a new framework has emerged: systems epidemiology. 
Laszlo and Krippner [4] defined a “system” as “a complex of in-
teracting components together with the relationships among 
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them that permit the identification of a boundary-maintaining 
entity or process” through systems theories. “Systems epide-
miology” is a concept derived from “systems biology,” which is 
a holistic and integrated approach to understand complex bi-
ological processes and phenotypes, and has been defined as a 
new integrative approach in human studies using high-
throughput multi-omics data [2,5-7]. Subsequently, Dammann 
et al. [8] defined systems epidemiology as “an epidemiologic 
approach to identify risk factors including systems-level (such 
as omics-level) exposure measurements at multiple levels, for 
instance, socio-demographic, clinical, or biological levels via 
network analyses of interrelationships among risk factors and 
computational simulation of risk scenarios in parallel to data-
driven biostatistical risk modeling”.

As omics techniques have been developed, high-through-
put data have become available for current epidemiological 
studies. Various levels of omics data include genomics, tran-
scriptomics, proteomics, metabolomics, and microbiome data 
[6]. These data types have tens to hundreds of thousands of 
variables. However, until recently, many studies have per-
formed simple regression-based analyses, such as by using 
genome-wide data or metabolomics data and then adjusting 
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for multiple corrections. It is well known that disease does not 
occur independently as a result of a single factor. To conduct a 
comprehensive analysis in terms of systems epidemiology, an 
alternative approach is needed. The network approach could 
help to integrate multi-omics data, visualize their interactions 
or relationships, and make inferences in the context of biologi-
cal mechanisms [9,10].

NETWORK STRUCTURE, VISUALIZATION, 
AND ANALYSIS

A network is a structural and graphical form consisting of 
nodes that indicate variables and edges that represent the re-
lationships between the variables. Nodes are also referred to 
as vertices, and edges are also called links [11]. Edges can con-
note various statistical estimates such as correlation coeffi-
cients and they can show their directionality (positive or nega-
tive) as well as their magnitudes. The network structure de-
pends on the edge threshold, such as the p-value or coefficient 
values, and the interpretation can also vary since nodes can 
only appear in the network when they are connected to an 
edge. Network analysis is possible only after network con-
struction is completed.

Correlation coefficients are commonly used to represent re-
lationships between variables [12]. Depending on whether 
the data are parametric or non-parametric, researchers can 
choose Pearson, Spearman, or Kendall correlation coefficients. 
However, these methods do not adjust for confounding ef-
fects from the other variables, so spurious edges might ap-
pear. The partial correlation method can provide a coefficient 
in which the effects of other variables are controlled [11,13]. 
Thus, partial correlations are recommended as a method that 
can also suggest plausible potential causal relationships.

Occasionally, a network has a tremendous number of nodes 
and edges. The more variables are displayed in a network, the 
more information will be obtained, but highly complex net-
works can be difficult to visualize and interpret. Thus, higher 
thresholds can help in some cases. A stricter threshold of the 
p-value (<0.05, <0.01, or lower) and coefficient values (>0.5, 
>0.7 or higher) can be used, or the least absolute shrinkage 
and selection operator (‘lasso’) can also be applied [11,13].

To date, although numerous tools have been developed for 
network analysis [9,14], the most representative tools are Cy-
toscape (https://cytoscape.org/) and R software (https://www.
r-project.org/), and many tutorials have been published [11, 

15-17]. R has various packages for network analysis, for in-
stance, corr or pcor to calculate correlation coefficients [18,19] 
and ggraph, igraph, qgraph, or Rgraphviz to visualize networks 
[20-23]. Therefore, network analysis can be performed within 
a single platform from start to finish. Instead, Cytoscape needs 
an appropriate input format from a correlation matrix that can 
be obtained from other statistical analysis tools. A previous 
study [12] provided a detailed process for the input format to 
Cytoscape. Nevertheless, the network can be handled, edited, 
and annotated much more easily in Cytoscape since it is a graphi-
cal-user-interface–based program [12,15].

Recently, some noteworthy web-based tools for network 
analysis centered on metabolomics data or metabolic path-
ways have been developed, such as the Metabolic network 
Analysis and Pathway Prediction Server (MAPPS) and the inte-
grated Metabolomics Analysis Platform (iMAP). MAPPS pro-
vides various analytical resources including pathway predic-
tion based on public databases, metabolic reachability, me-
tabolite-specific reactions, network building and comparison 
[24]. iMAP also provides functions for network construction, 
visualization, and analysis with a user-friendly interface [25]. 
Although both tools focus primarily on metabolite data, these 
tools allow users to analyze omics data with additional tran-
scriptomics or proteomics data sets. However, the papers pre-
senting those tools still describe the use of Cytoscape for to-
pological analysis or more personalized modifications [24,25].

INTERPRETATION OF NETWORK ANALYSIS

Once network visualization is complete, basic inferences are 
possible based on the graphical structure and relationships 
between the variables. Although some clusters with relatively 
many nodes gathered together or overall structural character-
istics (e.g., density or sparseness) can be observed, these do 
not provide an in-depth interpretation of the relationships be-
tween variables.

Interpretation of the network is possible through various 
parameters that can be obtained by network analysis. Some 
representative parameters are degree and betweenness, 
which have been defined in greater depth elsewhere [11]. In 
brief, the degree is defined as the number of edges that con-
nect to a node. Therefore, this parameter denotes the centrali-
ty of a node and the level of involvement of a node in the net-
work. The nodes with the highest degrees can be interpreted 
as “hub” nodes that play central roles in the relationships being 

https://cytoscape.org/
https://www.r-project.org/
https://www.r-project.org/


261

Network Analysis in Systems Epidemiology

analyzed. Betweenness is defined as the average path be-
tween other pairs of nodes and quantifies the importance of a 
node. When a node lies on the shortest path between two 
other nodes, it means that those connections are more impor-
tant than other connections. Thus, a higher value of the be-
tweenness parameter indicates that a node plays a key role in 
the network. It is not always the case that the node with the 
highest degree has the highest betweenness. Therefore, re-
searchers usually sort by degree and then find the highest be-
tweenness or vice versa [12].

When differences are examined between 2 or more groups, 
networks can be constructed for each group and then com-
pared (Figure 1). The first method uses Cytoscape, which pro-
vides a topological comparison. After calculating the correla-

tion matrix in each group to be compared, each network 
should be constructed in Cytoscape (Figure 1A and B). Then, 
using “merge” in “Tools,” 2 networks can be combined into 1 
network using various options. When users select the “differ-
ence” option, a new network is created after excluding over-
lapping edges and nodes between two networks. By designat-
ing a reference network, each network has unique edges and 
nodes in that group (Figure 1C and D). In this way, a structural 
interpretation is possible based on the unique relationships in 
each network [12].

Another method involves analyzing the statistical difference 
of correlation coefficients (i.e., differential correlations). Fuku-
shima [26] introduced the method of calculating differential 
correlations using the DiffCorr package in R. In brief, differen-

A B

C D

Figure 1. Examples of networks from artificial data. (A) Correlation-based network in the hypothetical condition A. (B) Correla-
tion based network in the hypothetical condition B. (C) Correlation-based network of unique relationships in the hypothetical 
condition A. (D) Correlation-based network of unique relationships in the hypothetical condition B. Red nodes: positive associa-
tions with the virtual outcome variable, blue nodes: negative associations with the virtual outcome variable, red edges: positive 
correlations, blue edges: negative correlations.
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tial correlation coefficients and p-values can be calculated 
based on the Fisher z-test between 2 correlation matrices after 
Fisher transformation of the coefficients. Users can proceed 
with visualizing the network in R, or they can import this data 
frame to Cytoscape to construct a network that presents the 
differential correlations between 2 groups. This network can 
be interpreted as indicating links with significantly different 
relationships between groups (Figure 2).

NETWORK ANALYSIS EXAMPLES

The methods described above have been practically ap-
plied in several studies, and diverse interpretations have been 
made according to the network visualization method. For ex-
ample, Batushansky et al. [12] aimed to reveal metabolic dif-
ferences between normal conditions and hypoxic conditions 
in breast carcinoma cell lines. Two networks based on the cor-
relation coefficients of metabolites were constructed, and 
they used the “merge” tool in Cytoscape to make unique net-
works under normal conditions and hypoxic conditions. The 
authors suggested potentially important metabolites in each 
network via parameters such as degree and betweenness that 

were obtained from NetworkAnalyzer in Cytoscape. This study 
interpreted the results as indicating that hypoxic conditions 
involved more metabolic paths in cell metabolism because 
there were more unique edges in the unique network of hy-
poxic conditions than in the network of normal conditions, 
and a possible explanation for the different mechanisms re-
lated to the higher degree and betweenness of lactate, gam-
ma-aminobutyric acid, alanine, and creatinine in each net-
work [12].

The difference in the networks between 2 groups can also 
be examined by differential correlations as a statistical ap-
proach [26], while the “merge” tool in Cytoscape is a topologi-
cal comparison as described above. Using the differential cor-
relation method, Li et al. [27] demonstrated differences in me-
tabolite networks between men and women, Wang et al. [28] 
revealed differences in metabolite networks between age 
groups (<50 and ≥50 years old) in men and women, and 
Costello et al. [29] found novel metabolites that showed differ-
ences between 2 phenotypes regarding joint replacement.  
These studies represented edges as colors where the differen-
tial correlations were positive or negative. In these cases, the 
original relationships between variables (negative or positive 
correlations) are unknown. Alternatives would be using both 
colors (red and blue) and shapes (solid and dotted) to reflect 
not only original relationships (e.g., the direction of correlation 
coefficients) between nodes, but also which group had stron-
ger relationships (e.g., the direction of the differential correla-
tion). The magnitude of the coefficients can also be shown as 
the width of edges.

Multiple networks according to thresholds such as p-values 
or coefficients can be constructed to zoom in and focus on 
stronger relationships between variables in the network. 
Huang et al. [30] constructed networks based on differential 
correlations between type 2 diabetes patients and a control 
group using 27 biomarkers related to type 2 diabetes. By com-
paring 3 different networks according to the thresholds (the 
magnitude of coefficients and p-value), the authors found that 
leptin was strongly linked to adiponectin and insulin-like 
growth factor binding protein 2, and that leptin played a cen-
tral role in diabetes development.

The network embodies diverse information, mainly by edg-
es such as color, shape, and width as described above. Howev-
er, nodes can also represent statistical estimates as color or 
shape. Floegel et al. [31] constructed a network that showed 
relationships between metabolites. The authors colored in 

Figure 2. Example of a differential correlation network be-
tween hypothetical condition A (Figure 1A) and hypothetical 
condition B (Figure 1B) from artificial data. Linked edges de-
note significantly different correlation coefficients between 
hypothetical condition A and hypothetical condition B. Red 
nodes: positive associations with the virtual outcome vari-
able, blue nodes: negative associations with the virtual out-
come variable, red edges: positive correlations, blue edges: 
negative correlations, solid edges: higher correlation coeffi-
cients in hypothetical condition A, dotted edges: higher cor-
relation coefficients in hypothetical condition B.
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nodes to indicate associations between metabolites and vari-
ous lifestyle factors, including diet, physical activity, and obe-
sity. With this approach, the network contains information not 
only about relationships among nodes, but also associations 
between nodes and other factors such as exposures or out-
comes of interest.

CONCLUSION

Taken together, network analysis is advantageous in that it 
can show the relationships among multiple variables in an in-
tegrated approach. In addition, clusters composed of variables 
can be identified through the visual structure, and variables 
that play an important role in the network can be found from 
parameters obtained through network analysis. Through this 
process, a potential mechanism can be suggested, and, there-
fore, further research (or experiments) focusing on a specific 
factor or pathway can be proposed. 

However, there are also points meriting caution in network 
analysis. Depending on the data transformation method and 
the edge presentation method (correlations, partial correla-
tions, or differential correlations), the structure of the final net-
work will be different, which can lead to a loss of information 
and thus misinterpretation. Moreover, the network can be used  
to propose a potential mechanism, but not to establish it.

To date, most studies using network analysis have been con-
ducted at a single layer (e.g., metabolomics, genomics, or 
blood biomarkers). This tendency may be due to the difficul-
ties in finding ideal statistical methods to merge omics data, 
which have different properties in terms of normality or scale. 
Nevertheless, attempts should be made to integrate and ana-
lyze multi-omics data through the development of suitable 
statistical methods in order for systems epidemiology to reach 
its considerable potential.
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