DOI QR코드

DOI QR Code

무선 채널을 활용한 제어 신호 컴퓨팅

Control Signal Computation using Wireless Channel

  • Jung, Mingyu (Department of Radio and Information Communications Engineering, Chungnam National University) ;
  • Park, Pangun (Department of Radio and Information Communications Engineering, Chungnam National University)
  • 투고 : 2021.06.15
  • 심사 : 2021.06.24
  • 발행 : 2021.07.31

초록

무선 기반 제어 시스템에서 안정성을 보장하기 위한 일반적인 설계 방식은 제어기가 무선채널을 통하여 개별 센서 값을 수신한 다음 계산된 제어신호를 액추에이터로 전송한다. 본 논문에서는 플랜트의 모든 센서가 동시에 스케일링된 신호를 액추에이터로 전송한 후, 액추에이터가 수신 된 신호를 추가적으로 스케일링하여 피드백 제어신호를 계산할 수 있는 Over-the-air controller 기법을 제안한다. 이러한 제어신호 컴퓨팅 기법은 기본적으로 Over-the-air computation 기술을 적용하여 무선 제어 시스템의 제어신호를 무선채널을 통하여 계산한다. 일반적인 센서-제어기-액추에이터 통신 방식과 대조적으로, Over-the-air controller는 다중 액세스 무선채널의 중첩 속성을 활용하여 단일통신 자원에서 다수 센싱 신호의 통신 및 컴퓨팅을 완료한다. 따라서 제안된 기법은 전용 제어기가 필요하지 않은 단순한 네트워크 구조로 피드백 지연시간 및 무선 자원 사용률을 개선시킬 수 있다.

To stabilize closed-loop wireless control systems, the state-of-the-art approach receives the individual sensor measurements at the controller and then sends the computed control signal to the actuators. We propose an over-the-air controller scheme where all sensors attached to the plant transmit scaled sensing signals simultaneously to the actuator, and the actuator then computes the feedback control signal by scaling the received signal. The over-the-air controller essentially adopts the over-the-air computation concept to compute the control signal for closed-loop wireless control systems. In contrast to the state-of-the-art sensor-to-controller and controller-to-actuator communication approach, the over-the-air controller exploits the superposition properties of multiple-access wireless channels to complete the communication and computation of a large number of sensing signals in a single communication resource unit. Therefore, the proposed scheme can obtain significant benefits in terms of low actuation delay and low resource utilization with a simple network architecture that does not require a dedicated controller.

키워드

참고문헌

  1. P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, "Wireless network design for control systems: A survey," in IEEE Communications Survey & Tutorials, vol. 20, no. 2, pp. 978-1013, 2018.
  2. J. Lunze, Control Theory of Digitally Networked Dynamic Systems. pringer, Heidelberg, 2014.
  3. P. Park, P. D. Marco, and K. H. Johansson, "Cross-Layer Optimization for Industrial Control Applications using Wireless Sensor and Actuator Mesh Networks," in IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3250-3259, Apr. 2017. https://doi.org/10.1109/TIE.2016.2631530
  4. P. Park, H. S. Ghadikolaei, and C. Fischione, "Proactive fault-tolerant wireless mesh networks for mission-critical control systems," in Journal of Network and Computer Applications, vol. 186, pp. 103082, 2021.
  5. O. Abari, H. Rahul, and D. Katabi, "Over-the-air function computation in sensor networks," 2016.
  6. H. Hellstrom, J. Mairton B. da Silva Jr, V. Fodor, and C. Fischione, "Wireless for machine learning," 2020.
  7. X. Cao, G. Zhu, J. Xu, and K. Huang, "Optimized power control for over-the-air computation in fading channels," in IEEE Transactions on Wireless Communication, vol. 19, no. 11, pp. 7498-7513, 2020. https://doi.org/10.1109/twc.2020.3012287
  8. G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System Design, Prentice Hall, 2000.
  9. W. Liu, X. Zang, Y. Li, and B. Vucetic, "Over-the-air computation systems: Optimization, analysis and scaling laws," IEEE Transactions on Wireless Communication, vol. 19, no. 8, pp. 5488-5502, 2020. https://doi.org/10.1109/twc.2020.2993703